Abstract
This paper addresses the problem of optimal economic-environmental dispatch in Multi-Terminal High-Voltage Direct Current (MT-HVDC) networks using the Sine-Cosine Algorithm (SCA). This optimization methodology allows working with nonlinear non-convex large-scale optimization problems via sequential programming. The SCA works with an initial population and rules of advance based on the best current solution and sine and cosine functions that define the direction of the next solution. Three variants of the SCA are evaluated in a standard six-node MT-HVDC system considering a linear combination of the objective functions (i.e., greenhouse emissions and energy production costs). The main advantage of the proposed evolutionary approach lies in its pure algorithmic structure. Thus, it can be easily adapted to any continuous optimization problem. All numerical calculations are performed using MATLAB software. © 2022