Mostrar el registro sencillo del ítem

dc.contributor.authorAkbari, Ehsan
dc.contributor.authorShafaghatian, Nima
dc.contributor.authorZishan, Farhad
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGiral-Ramírez, Diego Armando
dc.date.accessioned2023-07-24T18:53:09Z
dc.date.available2023-07-24T18:53:09Z
dc.date.issued2022-09
dc.date.submitted2023-07
dc.identifier.citationE. Akbari, N. Shafaghatian, F. Zishan, O. D. Montoya and D. A. Giral-Ramírez, "Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations," in IEEE Access, vol. 10, pp. 95824-95838, 2022, doi:10.1109/ACCESS.2022.3203730.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12410
dc.description.abstractThe main problem in the operation of micro-grids is controlling the voltage and frequency. The inertia of the whole grid is low, so the operation of the system is interrupted by sudden changes in load or incidence in the absence of a proper control system. In order to solve this issue, various control structures have been proposed. In this paper, an optimal distributed control strategy for coordinating multiple distributed generation instances is presented in an islanded microgrid. A secondary frequency control method is implemented in order to eliminate voltage deviation and reduce the small signal error. In this layer, an optimized PID controller is used. PID controller optimization is carried out via the Honey Badger Algorithm, and results are obtained using the MATLAB software. According to the results, inadequate adjustment of a secondary loop leads to poor and unacceptable outcomes, and the necessary power quality is not achieved. However, by using the proposed method, a proper performance of the microgrid in the face of disturbances is achieved.spa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE Access - Vol. 10 (2022)spa
dc.titleOptimized Two-Level Control of Islanded Microgrids to Reduce Fluctuationsspa
dcterms.bibliographicCitationSadeghi, B., Shafaghatian, N., Alayi, R., El Haj Assad, M., Zishan, F., Hosseinzadeh, H. Optimization of synchronized frequency and voltage control for a distributed generation system using the Black Widow Optimization algorithm (2022) Clean Energy, 6 (1), pp. 869-882. Cited 8 times. https://academic.oup.com/ce/pages/About doi: 10.1093/ce/zkab062spa
dcterms.bibliographicCitationShafaghatian, N., Kiani, A., Taheri, N., Rahimkhani, Z., Masoumi, S.S. Damping controller design based on FO-PID-EMA in VSC HVDC system to improve stability of hybrid power system (2020) Journal of Central South University, 27 (2), pp. 403-417. Cited 5 times. http://www.springerlink.com/content/2095-2899/ doi: 10.1007/s11771-020-4305-2spa
dcterms.bibliographicCitationAlmas Prakasa, M., Subiyanto, S. Optimal cost and feasible design for grid-connected microgrid on campus area using the robust-intelligence method (2022) Clean Energy, 6 (1), pp. 823-840. Cited 4 times. https://academic.oup.com/ce/pages/About doi: 10.1093/ce/zkab046spa
dcterms.bibliographicCitationMutarraf, M.U., Terriche, Y., Nasir, M., Guan, Y., Su, C.-L., Vasquez, J.C., Guerrero, J.M. A Communication-Less Multimode Control Approach for Adaptive Power Sharing in Ship-Based Seaport Microgrid (2021) IEEE Transactions on Transportation Electrification, 7 (4), pp. 3070-3082. Cited 23 times. https://www.ieee.org/membership-catalog/productdetail/showProductDetailPage.html?product=PER473-ELE&utm_source=Mainsite_CSE&utm_medium=CSE_Promotion&utm_campaign=Catalog_Promotion-PER473 doi: 10.1109/TTE.2021.3087722spa
dcterms.bibliographicCitationVorobev, P., Huang, P.-H., Hosani, M.A., Kirtley, J.L., Turitsyn, K. Plug- and-play compliant control for inverter-based microgrids (2020) Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), p. 1. Janspa
dcterms.bibliographicCitationZhang, D., Ambikairajah, E. De-coupled PQ control for operation of islanded microgrid (Open Access) (2015) 2015 Australasian Universities Power Engineering Conference: Challenges for Future Grids, AUPEC 2015, art. no. 7324820. Cited 7 times. ISBN: 978-147998725-2 doi: 10.1109/AUPEC.2015.7324820spa
dcterms.bibliographicCitationChishti, F., Murshid, S., Singh, B. Robust Normalized Mixed-Norm Adaptive Control Scheme for PQ Improvement at PCC of a Remotely Located Wind-Solar PV-BES Microgrid (2020) IEEE Transactions on Industrial Informatics, 16 (3), art. no. 8741037, pp. 1708-1721. Cited 26 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2019.2923641spa
dcterms.bibliographicCitationCaldognetto, T., Tenti, P. Microgrids operation based on master-slave cooperative control (2014) IEEE Journal of Emerging and Selected Topics in Power Electronics, 2 (4), art. no. 6868993, pp. 1081-1088. Cited 117 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2014.2345052spa
dcterms.bibliographicCitationSivaranjani, S., Agarwal, E., Gupta, V., Antsaklis, P., Xie, L. Distributed mixed voltage angle and frequency droop control of microgrid interconnections with loss of distribution-PMU measurements (2021) IEEE Open Access Journal of Power and Energy, 8, art. no. 9309247, pp. 45-56. Cited 13 times. https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=8784343 doi: 10.1109/OAJPE.2020.3047639spa
dcterms.bibliographicCitationBraitor, A.-C., Konstantopoulos, G.C., Kadirkamanathan, V. Current-Limiting Droop Control Design and Stability Analysis for Paralleled Boost Converters in DC Microgrids (Open Access) (2021) IEEE Transactions on Control Systems Technology, 29 (1), art. no. 8949467, pp. 385-394. Cited 31 times. https://ieeexplore.ieee.org/servlet/opac?punumber=87 doi: 10.1109/TCST.2019.2951092spa
dcterms.bibliographicCitationLiu, B., Wu, T., Liu, Z., Liu, J. A Small-AC-Signal Injection-Based Decentralized Secondary Frequency Control for Droop-Controlled Islanded Microgrids (2020) IEEE Transactions on Power Electronics, 35 (11), art. no. 9050833, pp. 11634-11651. Cited 46 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2020.2983878spa
dcterms.bibliographicCitationLing, Y., Li, Y., Yang, Z., Xiang, J. A Dispatchable Droop Control Method for Distributed Generators in Islanded AC Microgrids (2021) IEEE Transactions on Industrial Electronics, 68 (9), art. no. 9161413, pp. 8356-8366. Cited 10 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2020.3013547spa
dcterms.bibliographicCitationChoi, D., Park, J.-W., Lee, S.H. Virtual Multi-Slack Droop Control of Stand-Alone Microgrid With High Renewable Penetration Based on Power Sensitivity Analysis (2018) IEEE Transactions on Power Systems, 33 (3), pp. 3408-3417. Cited 21 times. doi: 10.1109/TPWRS.2018.2810443spa
dcterms.bibliographicCitationWang, Z., Qiu, S., Song, R., Wang, X., Zhu, B., Li, B. Research on PID parameter tuning of coordinated control for ultra-supercritical units based on Ziegler Nichols method (2019) Proceedings of 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2019, art. no. 8984069, pp. 1155-1158. Cited 3 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8966969 ISBN: 978-172810513-0 doi: 10.1109/IMCEC46724.2019.8984069spa
dcterms.bibliographicCitationSayed, M.M., Saad, M.S., Emara, H.M., Abou El-Zahab, E.E. A novel method for tuning the PID parameters based on the modified biogeography-based optimization for hydraulic servo control system (2012) IET Conference Publications, 2012 (592 CP), p. P227. Cited 3 times. ISBN: 978-184919616-1 doi: 10.1049/cp.2012.0171spa
dcterms.bibliographicCitationAlghamdi, B., Cañizares, C.A. Frequency Regulation in Isolated Microgrids through Optimal Droop Gain and Voltage Control (2021) IEEE Transactions on Smart Grid, 12 (2), art. no. 9211793, pp. 988-998. Cited 40 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3028472spa
dcterms.bibliographicCitationMahmud, R., Hossain, M.A., Pota, H. Nonlinear Output Feedback Droop Control for Parallel Inverters in Standalone Microgrids (Open Access) (2019) 2019 9th International Conference on Power and Energy Systems, ICPES 2019, art. no. 9105385. Cited 5 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9098828 ISBN: 978-172812658-6 doi: 10.1109/ICPES47639.2019.9105385spa
dcterms.bibliographicCitationPatarroyo-Montenegro, J.F., Andrade, F., Guerrero, J.M., Vasquez, J.C. A Linear Quadratic Regulator with Optimal Reference Tracking for Three-Phase Inverter-Based Islanded Microgrids (2021) IEEE Transactions on Power Electronics, 36 (6), art. no. 9250669, pp. 7112-7122. Cited 28 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2020.3036594spa
dcterms.bibliographicCitationAlayi, R., Zishan, F., Mohkam, M., Hoseinzadeh, S., Memon, S., Garcia, D.A. A sustainable energy distribution configuration for microgrids integrated to the national grid using back-to-back converters in a renewable power system (Open Access) (2021) Electronics (Switzerland), 10 (15), art. no. 1826. Cited 21 times. https://www.mdpi.com/2079-9292/10/15/1826/pdf doi: 10.3390/electronics10151826spa
dcterms.bibliographicCitationDong, X., Li, X., Cheng, S. Energy management optimization of microgrid cluster based on multi-agent-system and hierarchical stackelberg game theory (2020) IEEE Access, 8, pp. 206183-206197. Cited 43 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3037676spa
dcterms.bibliographicCitationXu, Y., Sun, H., Gu, W., Xu, Y., Li, Z. Optimal Distributed Control for Secondary Frequency and Voltage Regulation in an Islanded Microgrid (Open Access) (2019) IEEE Transactions on Industrial Informatics, 15 (1), art. no. 8264802, pp. 225-235. Cited 132 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2018.2795584spa
dcterms.bibliographicCitationRoss, M., Abbey, C., Bouffard, F., Joós, G. Multiobjective optimization dispatch for microgrids with a high penetration of renewable generation (Open Access) (2015) IEEE Transactions on Sustainable Energy, 6 (4), art. no. 7122352, pp. 1306-1314. Cited 114 times. doi: 10.1109/TSTE.2015.2428676spa
dcterms.bibliographicCitationYuan, W., Wang, Y., Chen, Z. New perspectives on power control of AC microgrid considering operation cost and efficiency (2021) IEEE Transactions on Power Systems, 36 (5), art. no. 9430723, pp. 4844-4847. Cited 10 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2021.3080141spa
dcterms.bibliographicCitationAlayi, R., Zishan, F., Seyednouri, S.R., Kumar, R., Ahmadi, M.H., Sharifpur, M. Optimal load frequency control of island microgrids via a pid controller in the presence of wind turbine and pv (2021) Sustainability (Switzerland), 13 (19), art. no. 10728. Cited 38 times. https://www.mdpi.com/2071-1050/13/19/10728/pdf doi: 10.3390/su131910728spa
dcterms.bibliographicCitationOu, L., Tang, Y., Gu, D., Zhang, W. Stability analysis of PID controllers for integral processes with time delay (Open Access) (2005) Proceedings of the American Control Conference, 6, art. no. FrB08.6, pp. 4247-4252. Cited 21 times.spa
dcterms.bibliographicCitationHashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems (Open Access) (2022) Mathematics and Computers in Simulation, 192, pp. 84-110. Cited 276 times. https://www.journals.elsevier.com/mathematics-and-computers-in-simulation doi: 10.1016/j.matcom.2021.08.013spa
dcterms.bibliographicCitationHayyolalam, V., Pourhaji Kazem, A.A. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems (Open Access) (2020) Engineering Applications of Artificial Intelligence, 87, art. no. 103249. Cited 378 times. https://www.journals.elsevier.com/engineering-applications-of-artificial-intelligence doi: 10.1016/j.engappai.2019.103249spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/ACCESS.2022.3203730
dc.subject.keywordsDistributed controlspa
dc.subject.keywordsHoney badger algorithmspa
dc.subject.keywordsMicrogridsspa
dc.subject.keywordsOptimizationspa
dc.subject.keywordsTwo-level controlspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.