Mostrar el registro sencillo del ítem
Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
dc.contributor.author | Paternina-Verona, Duban A. | |
dc.contributor.author | Coronado-Hernández, Oscar E. | |
dc.contributor.author | Fuertes-Miquel, Vicente S. | |
dc.date.accessioned | 2023-07-21T20:53:43Z | |
dc.date.available | 2023-07-21T20:53:43Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Paternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12402 | |
dc.description.abstract | Different methods of two-dimensional and three-dimensional numerical resolution models have been used to predict the air–water interaction in pipe systems in the early twenty-first century, where reliable and adequate results have been obtained when compared with experimental results. However, the study of the drainage process in pressurized systems with air admitted through openings has not been studied using this type of model due to the complexity that this represents. In this research, a two-dimensional numerical model is developed in the open-source software OpenFOAM; this model represents the drainage of an irregular pipe with air admitted by an air valve, defined by a structured mesh. A validation of the numerical model related to the air admitted by the variation of the air valve diameter is also performed. © 2022 Informa UK Limited, trading as Taylor & Francis Group. | spa |
dc.format.extent | 9 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Urban Water Journal | spa |
dc.title | Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104 | spa |
dcterms.bibliographicCitation | Ali, Z., Tucker, P.G., Shahpar, S. Optimal mesh topology generation for CFD (2017) Computer Methods in Applied Mechanics and Engineering, 317, pp. 431-457. Cited 14 times. http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/ doi: 10.1016/j.cma.2016.12.001 | spa |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711 | spa |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819 | spa |
dcterms.bibliographicCitation | Besharat, M., Tarinejad, R., Ramos, H.M. The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply: Research and Technology - AQUA, 65 (2), pp. 116-126. Cited 28 times. http://aqua.iwaponline.com/content/ppiwajwsrt/65/2/116.full.pdf doi: 10.2166/aqua.2015.081 | spa |
dcterms.bibliographicCitation | Blazek, J. Computational Fluid Dynamics: Principles and Applications: Third Edition (2015) Computational Fluid Dynamics: Principles and Applications: Third Edition, pp. 1-447. Cited 431 times. http://www.sciencedirect.com/science/book/9780080999951 ISBN: 978-012801172-0; 978-008099995-1 doi: 10.1016/C2013-0-19038-1 | spa |
dcterms.bibliographicCitation | Bombardelli, F. Computational multi-phase fluid dynamics to address flows past hydraulic structures (2012) 4th IAHR International Symposium on Hydraulic Structures. Cited 30 times. ISBN: 978-989850901-7 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 36 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098 | spa |
dcterms.bibliographicCitation | Espert, V., Cabrera, E., Martínez, E., Pérez, R., Vela, A. Air Vessel Collapse Due to a Thermal Change. A Case Study (1991) Hydraulic Transients with Water Column Separation - 9th and Last Round Table of the IARH Group Valencia, Spain: IAHR, and,. In | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465 | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188 | spa |
dcterms.bibliographicCitation | Ghorai, S., Nigam, K.D.P. CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes (Open Access) (2006) Chemical Engineering and Processing: Process Intensification, 45 (1), pp. 55-65. Cited 97 times. doi: 10.1016/j.cep.2005.05.006 | spa |
dcterms.bibliographicCitation | Hirt, C.W., Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries (1981) Journal of Computational Physics, 39 (1), pp. 201-225. Cited 12488 times. doi: 10.1016/0021-9991(81)90145-5 | spa |
dcterms.bibliographicCitation | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., (...), van't Westende, J.M.C. Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. Cited 44 times. doi: 10.1061/(ASCE)HY.1943-7900.0000631 | spa |
dcterms.bibliographicCitation | Liu, D., Zhou, L., Karney, B., Zhang, Q., Ou, C. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket (Open Access) (2011) Journal of Hydraulic Research, 49 (6), pp. 799-803. Cited 34 times. doi: 10.1080/00221686.2011.621740 | spa |
dcterms.bibliographicCitation | Martins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046 | spa |
dcterms.bibliographicCitation | Martins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C. CFD modeling of transient flow in pressurized pipes (2016) Computers and Fluids, 126, pp. 129-140. Cited 70 times. doi: 10.1016/j.compfluid.2015.12.002 | spa |
dcterms.bibliographicCitation | Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (Open Access) (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15816 times. doi: 10.2514/3.12149 | spa |
dcterms.bibliographicCitation | Muralha, A., Melo, J.F., Ramos, H.M. Assessment of CFD solvers and turbulent models for water free jets in spillways (Open Access) (2020) Fluids, 5 (3), art. no. 100. Cited 7 times. https://www.mdpi.com/2311-5521/5/3/104 doi: 10.3390/fluids5030104 View at Publisher | spa |
dcterms.bibliographicCitation | Pozos-Estrada, O., Pothof, I., Fuentes-Mariles, O.A., Dominguez-Mora, R., Pedrozo-Acuña, A., Meli, R., Peña, F. Failure of a drainage tunnel caused by an entrapped air pocket (2015) Urban Water Journal, 12 (6), pp. 446-454. Cited 22 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2015.1041990 | spa |
dcterms.bibliographicCitation | Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., (...), Xu, C. CFD approach for column separation in water pipelines (2016) Journal of Hydraulic Engineering, 142 (10), art. no. 04016036. Cited 32 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001171 | spa |
dcterms.bibliographicCitation | Wu, G., Duan, X., Zhu, J., Li, X., Tang, X., Gao, H. Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models (Open Access) (2021) Journal of Hydroinformatics, 23 (2), pp. 231-248. Cited 7 times. https://iwaponline.com/jh/article/23/2/231/80219/Investigations-of-hydraulic-transient-flows-in doi: 10.2166/HYDRO.2021.134 | spa |
dcterms.bibliographicCitation | Zhou, F., Hicks, F.E., Steffler, P.M. Transient flow in a rapidly filling horizontal pipe containing trapped air (Open Access) (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634. Cited 200 times. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625) | spa |
dcterms.bibliographicCitation | Zhou, L., Liu, D.-Y., Ou, C.-Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140. Cited 79 times. http://jeacfm.cse.polyu.edu.hk/download/download.php?dirname=vol5no1&act=d&f=vol5no1-10_ZhouL.pdf doi: 10.1080/19942060.2011.11015357 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | Paternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578. | |
dc.subject.keywords | Air; | spa |
dc.subject.keywords | Geysers; | spa |
dc.subject.keywords | Emptying | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.