Mostrar el registro sencillo del ítem

dc.contributor.authorPaternina-Verona, Duban A.
dc.contributor.authorCoronado-Hernández, Oscar E.
dc.contributor.authorFuertes-Miquel, Vicente S.
dc.date.accessioned2023-07-21T20:53:43Z
dc.date.available2023-07-21T20:53:43Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationPaternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12402
dc.description.abstractDifferent methods of two-dimensional and three-dimensional numerical resolution models have been used to predict the air–water interaction in pipe systems in the early twenty-first century, where reliable and adequate results have been obtained when compared with experimental results. However, the study of the drainage process in pressurized systems with air admitted through openings has not been studied using this type of model due to the complexity that this represents. In this research, a two-dimensional numerical model is developed in the open-source software OpenFOAM; this model represents the drainage of an irregular pipe with air admitted by an air valve, defined by a structured mesh. A validation of the numerical model related to the air admitted by the variation of the air valve diameter is also performed. © 2022 Informa UK Limited, trading as Taylor & Francis Group.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceUrban Water Journalspa
dc.titleNumerical modelling for analysing drainage in irregular profile pipes using OpenFOAMspa
dcterms.bibliographicCitationAguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104spa
dcterms.bibliographicCitationAli, Z., Tucker, P.G., Shahpar, S. Optimal mesh topology generation for CFD (2017) Computer Methods in Applied Mechanics and Engineering, 317, pp. 431-457. Cited 14 times. http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/ doi: 10.1016/j.cma.2016.12.001spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819spa
dcterms.bibliographicCitationBesharat, M., Tarinejad, R., Ramos, H.M. The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply: Research and Technology - AQUA, 65 (2), pp. 116-126. Cited 28 times. http://aqua.iwaponline.com/content/ppiwajwsrt/65/2/116.full.pdf doi: 10.2166/aqua.2015.081spa
dcterms.bibliographicCitationBlazek, J. Computational Fluid Dynamics: Principles and Applications: Third Edition (2015) Computational Fluid Dynamics: Principles and Applications: Third Edition, pp. 1-447. Cited 431 times. http://www.sciencedirect.com/science/book/9780080999951 ISBN: 978-012801172-0; 978-008099995-1 doi: 10.1016/C2013-0-19038-1spa
dcterms.bibliographicCitationBombardelli, F. Computational multi-phase fluid dynamics to address flows past hydraulic structures (2012) 4th IAHR International Symposium on Hydraulic Structures. Cited 30 times. ISBN: 978-989850901-7spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 36 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098spa
dcterms.bibliographicCitationEspert, V., Cabrera, E., Martínez, E., Pérez, R., Vela, A. Air Vessel Collapse Due to a Thermal Change. A Case Study (1991) Hydraulic Transients with Water Column Separation - 9th and Last Round Table of the IARH Group Valencia, Spain: IAHR, and,. Inspa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188spa
dcterms.bibliographicCitationGhorai, S., Nigam, K.D.P. CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes (Open Access) (2006) Chemical Engineering and Processing: Process Intensification, 45 (1), pp. 55-65. Cited 97 times. doi: 10.1016/j.cep.2005.05.006spa
dcterms.bibliographicCitationHirt, C.W., Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries (1981) Journal of Computational Physics, 39 (1), pp. 201-225. Cited 12488 times. doi: 10.1016/0021-9991(81)90145-5spa
dcterms.bibliographicCitationLaanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., (...), van't Westende, J.M.C. Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. Cited 44 times. doi: 10.1061/(ASCE)HY.1943-7900.0000631spa
dcterms.bibliographicCitationLiu, D., Zhou, L., Karney, B., Zhang, Q., Ou, C. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket (Open Access) (2011) Journal of Hydraulic Research, 49 (6), pp. 799-803. Cited 34 times. doi: 10.1080/00221686.2011.621740spa
dcterms.bibliographicCitationMartins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046spa
dcterms.bibliographicCitationMartins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C. CFD modeling of transient flow in pressurized pipes (2016) Computers and Fluids, 126, pp. 129-140. Cited 70 times. doi: 10.1016/j.compfluid.2015.12.002spa
dcterms.bibliographicCitationMenter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (Open Access) (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15816 times. doi: 10.2514/3.12149spa
dcterms.bibliographicCitationMuralha, A., Melo, J.F., Ramos, H.M. Assessment of CFD solvers and turbulent models for water free jets in spillways (Open Access) (2020) Fluids, 5 (3), art. no. 100. Cited 7 times. https://www.mdpi.com/2311-5521/5/3/104 doi: 10.3390/fluids5030104 View at Publisherspa
dcterms.bibliographicCitationPozos-Estrada, O., Pothof, I., Fuentes-Mariles, O.A., Dominguez-Mora, R., Pedrozo-Acuña, A., Meli, R., Peña, F. Failure of a drainage tunnel caused by an entrapped air pocket (2015) Urban Water Journal, 12 (6), pp. 446-454. Cited 22 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2015.1041990spa
dcterms.bibliographicCitationWang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., (...), Xu, C. CFD approach for column separation in water pipelines (2016) Journal of Hydraulic Engineering, 142 (10), art. no. 04016036. Cited 32 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001171spa
dcterms.bibliographicCitationWu, G., Duan, X., Zhu, J., Li, X., Tang, X., Gao, H. Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models (Open Access) (2021) Journal of Hydroinformatics, 23 (2), pp. 231-248. Cited 7 times. https://iwaponline.com/jh/article/23/2/231/80219/Investigations-of-hydraulic-transient-flows-in doi: 10.2166/HYDRO.2021.134spa
dcterms.bibliographicCitationZhou, F., Hicks, F.E., Steffler, P.M. Transient flow in a rapidly filling horizontal pipe containing trapped air (Open Access) (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634. Cited 200 times. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)spa
dcterms.bibliographicCitationZhou, L., Liu, D.-Y., Ou, C.-Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140. Cited 79 times. http://jeacfm.cse.polyu.edu.hk/download/download.php?dirname=vol5no1&act=d&f=vol5no1-10_ZhouL.pdf doi: 10.1080/19942060.2011.11015357spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doiPaternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578.
dc.subject.keywordsAir;spa
dc.subject.keywordsGeysers;spa
dc.subject.keywordsEmptyingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.