Mostrar el registro sencillo del ítem

dc.contributor.authorRios, Y.
dc.contributor.authorGarcía-Rodríguez, J.
dc.contributor.authorSanchez, E.
dc.contributor.authorAlanis, A.
dc.contributor.authorRuiz-Velázquez, E.
dc.contributor.authorPardo, A.
dc.date.accessioned2023-07-21T20:52:43Z
dc.date.available2023-07-21T20:52:43Z
dc.date.issued2020
dc.date.submitted2023
dc.identifier.citationRios, Y., García-Rodríguez, J., Sanchez, E., Alanis, A., Ruiz-Velazquez, E., & Pardo, A. (2020). Neuro-fuzzy control for artificial pancreas: in silico development and validation. Revista Iberoamericana De Automatica e Informatica Industrial, 17(4), 390-400.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12400
dc.description.abstractType 1 Diabetes Mellitus (DMT1) is currently one of the most harmful diseases that affect people of any age, including children from birth. Exogenous insulin injections remain the most common treatment for these patients, however, it is not the optimal one. The scientific community has endeavored to optimize i nsulin administration using electronic devices and thus improve the diabetics life expectancy. There are numerous limitations for this biomedical evolution to become a reality such as the control algorithms validation, experimentation with electronic devices, and applicability in patients age transcendence, among others. This work presents the prototyping of a neuro-fuzzy intelligent controller on the Texas Instruments LAUNCHXL-F28069M development board to form a hardware in the loop (HIL) scheme. That is, the embedded controller sends the insulin delivery rate data to the computer where it is captured by the Uva/Padova software and integrated into the metabolic simulation of virtual diabetic patients treated with an insulin pump. The main task of the embedded intelligent algorithm is to determine the optimal insulin infusion rate for each of the 30 virtual patients who follow a meal protocol. The novelty of this work focuses on overcoming current limitations through a first intelligent control algorithm a pproach applicable to artificial pancreas (A P) and an alyzing the feasibility of this proposal in age transcendence since the results correspond to in-silico tests in populations of 10 adults, 10 adolescents and 10 children. © 2020 Universitat Politecnica de Valencia. All rights reserved.spa
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRIAI - Revista Iberoamericana de Automatica e Informatica Industrialspa
dc.titleNeuro-fuzzy control for artificial pancreas: In silico development and validationspa
dc.title.alternativeControl neuro-fuzzy para páncreas artificial: Desarrollo y validación in-silicospa
dcterms.bibliographicCitationAlanis, A.Y., Sanchez, E.N., Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order neural networks (2007) IEEE Transactions on Neural Networks, 18 (4), pp. 1185-1195. Cited 151 times. doi: 10.1109/TNN.2007.899170spa
dcterms.bibliographicCitationYang, W., Dall, T.M., Halder, P., Gallo, P., Kowal, S.L., Hogan, P.F., Petersen, M. Economic costs of diabetes in the U.S. in 2012 (2013) Diabetes Care, 36 (4), pp. 1033-1046. Cited 1864 times. http://care.diabetesjournals.org/content/36/4/1033.full.pdf doi: 10.2337/dc12-2625spa
dcterms.bibliographicCitationBrown, J.B., Pedula, K.L., Bakst, A.W. The progressive cost of complications in type 2 diabetes mellitus (1999) Archives of Internal Medicine, 159 (16), pp. 1873-1880. Cited 197 times. doi: 10.1001/archinte.159.16.1873spa
dcterms.bibliographicCitationChang, F.-J., Chiang, Y.-M., Chang, L.-C. Multi-step-ahead neural networks for flood forecasting (2007) Hydrological Sciences Journal, 52 (1), pp. 114-130. Cited 115 times. doi: 10.1623/hysj.52.1.114spa
dcterms.bibliographicCitationChen, P.-A., Chang, L.-C., Chang, F.-J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts (2013) Journal of Hydrology, 497, pp. 71-79. Cited 108 times. doi: 10.1016/j.jhydrol.2013.05.038spa
dcterms.bibliographicCitationThe Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus (Open Access) (1993) New England Journal of Medicine, 329 (14), pp. 977-986. Cited 23060 times. doi: 10.1056/NEJM199309303291401spa
dcterms.bibliographicCitationGeman, O., Chiuchisan, I., Toderean, R. Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction (2017) 2017 E-Health and Bioengineering Conference, EHB 2017, art. no. 7995505, pp. 639-642. Cited 30 times. ISBN: 978-153860358-1 doi: 10.1109/EHB.2017.7995505spa
dcterms.bibliographicCitationKarahoca, A., Karahoca, D., Kara, A. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems (Open Access) (2009) ICSCCW 2009 - 5th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, art. no. 5379497. Cited 11 times. ISBN: 978-142443428-2 doi: 10.1109/ICSCCW.2009.5379497spa
dcterms.bibliographicCitationKim, S. Burden of hospitalizations primarily due to uncontrolled diabetes: Implications of inadequate primary health care in the United States (Open Access) (2007) Diabetes Care, 30 (5), pp. 1281-1282. Cited 99 times. http://care.diabetesjournals.org/cgi/reprint/30/5/1281 doi: 10.2337/dc06-2070spa
dcterms.bibliographicCitationKovatchev, B.P., Breton, M., Dalla Man, C., Cobelli, C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes (Open Access) (2009) Journal of Diabetes Science and Technology, 3 (1), pp. 44-55. Cited 595 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680900300106spa
dcterms.bibliographicCitationKropff, J., Del Favero, S., Place, J., Toffanin, C., Visentin, R., Monaro, M., Messori, M., (...), Magni, L. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: A randomised crossover trial (2015) The Lancet Diabetes and Endocrinology, 3 (12), pp. 939-947. Cited 185 times. http://www.journals.elsevier.com/the-lancet-diabetes-and-endocrinology doi: 10.1016/S2213-8587(15)00335-6spa
dcterms.bibliographicCitationLekkas, S., Mikhailov, L. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases (Open Access) (2010) Artificial Intelligence in Medicine, 50 (2), pp. 117-126. Cited 76 times. doi: 10.1016/j.artmed.2010.05.007spa
dcterms.bibliographicCitationLi, W., Todorov, E., Liu, D. Inverse optimality design for biological movement systems (2011) IFAC Proceedings Volumes (IFAC-PapersOnline), 44 (1 PART 1), pp. 9662-9667. Cited 25 times. http://www.ifac-papersonline.net/browser?browse=c ISBN: 978-390266193-7 doi: 10.3182/20110828-6-IT-1002.00877spa
dcterms.bibliographicCitationNath, A., Dey, R., Balas, V.E. Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control (2018) Advances in Intelligent Systems and Computing, 634, pp. 286-296. Cited 10 times. http://www.springer.com/series/11156 ISBN: 978-331962523-2 doi: 10.1007/978-3-319-62524-9_23spa
dcterms.bibliographicCitationOrnelas, F., Sanchez, E.N., Loukianov, A.G. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach (Open Access) (2011) Proceedings of the IEEE International Conference on Control Applications, art. no. 6044461, pp. 1431-1436. Cited 33 times. ISBN: 978-145771062-9 doi: 10.1109/CCA.2011.6044461spa
dcterms.bibliographicCitationOrnelas-Tellez, F., Sanchez, E.N., Loukianov, A.G., Navarro-Lopez, E.M. Speed-gradient inverse optimal control for discrete-time nonlinear systems (2011) Proceedings of the IEEE Conference on Decision and Control, art. no. 6160374, pp. 290-295. Cited 27 times. ISBN: 978-161284800-6 doi: 10.1109/CDC.2011.6160374spa
dcterms.bibliographicCitationPes, P., Herrero, P., Reddy, M., Xenou, M., Oliver, N., Johnston, D., Toumazou, C., (...), Georgiou, P. An advanced bolus calculator for type 1 diabetes: System architecture and usability results (Open Access) (2016) IEEE Journal of Biomedical and Health Informatics, 20 (1), art. no. 7174940, pp. 11-17. Cited 40 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 doi: 10.1109/JBHI.2015.2464088spa
dcterms.bibliographicCitationRios, Y.Y., Garcia-Rodriguez, J.A., Sanchez, E.N., Alanis, A.Y., Ruiz-Velazquez, E. Rapid Prototyping of Neuro-Fuzzy Inverse Optimal Control as Applied to T1DM Patients (2018) 2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018, art. no. 8625241. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8609898 ISBN: 978-153864625-0 doi: 10.1109/LA-CCI.2018.8625241spa
dcterms.bibliographicCitationRios, Y.Y., García-Rodríguez, J.A., Sánchez, O.D., Sanchez, E.N., Alanis, A.Y., Ruiz-Velázquez, E., Arana-Daniel, N. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment (Open Access) (2018) Proceedings of the International Joint Conference on Neural Networks, 2018-July, art. no. 8489197. Cited 9 times. ISBN: 978-150906014-6 doi: 10.1109/IJCNN.2018.8489197spa
dcterms.bibliographicCitationSanchez, E.N., Ornelas-Tellez, F. Discrete-time inverse optimal control for nonlinear systems (2017) Discrete-Time Inverse Optimal Control for Nonlinear Systems, pp. 1-232. Cited 38 times. http://www.tandfebooks.com/doi/book/10.1201/b14779 ISBN: 978-146658088-6; 978-146658087-9 doi: 10.1201/b14779spa
dcterms.bibliographicCitationThabit, H., Hovorka, R. Coming of age: the artificial pancreas for type 1 diabetes (Open Access) (2016) Diabetologia, 59 (9), pp. 1795-1805. Cited 171 times. link.springer.de/link/service/journals/00125/index.htm doi: 10.1007/s00125-016-4022-4spa
dcterms.bibliographicCitationTurksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., Cinar, A. Meal detection in patients with type 1 diabetes: A new module for the multivariable adaptive artificial pancreas control system (Open Access) (2016) IEEE Journal of Biomedical and Health Informatics, 20 (1), art. no. 7124410, pp. 47-54. Cited 102 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 doi: 10.1109/JBHI.2015.2446413spa
dcterms.bibliographicCitationYeh, H.-C., Brown, T.T., Maruthur, N., Ranasinghe, P., Berger, Z., Suh, Y.D., Wilson, L.M., (...), Golden, S.H. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis (Open Access) (2012) Annals of Internal Medicine, 157 (5), pp. 336-347. Cited 405 times. http://annals.org/data/Journals/AIM/24808/0000605-201209040-00006.pdf doi: 10.7326/0003-4819-157-5-201209040-00508spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.7326/0003-4819-157-5-201209040-00508
dc.subject.keywordsGlucose; Hypoglycemia;spa
dc.subject.keywordsInsulin Dependent Diabetes Mellitusspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.