Mostrar el registro sencillo del ítem

dc.contributor.authorDjilali, Larbi
dc.contributor.authorBadillo-Olvera, Anuar
dc.contributor.authorRios, Yennifer Yuliana
dc.contributor.authorLópez-Beltrán, Harold
dc.contributor.authorSaihi, Lakhdar
dc.date.accessioned2023-07-21T20:52:11Z
dc.date.available2023-07-21T20:52:11Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationDjilali, L., Badillo-Olvera, A., Rios, Y. Y., López-Beltrán, H., & Saihi, L. (2021). Neural high order sliding mode control for doubly fed induction generator based wind turbines. IEEE Latin America Transactions, 20(2), 223-232.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12399
dc.description.abstractWind energy has many advantages because it does not pollute and is an inexhaustible source of energy. In this paper Neural High Order Sliding Mode (NHOSM) control is developed for Doubly Fed Induction Generator (DFIG) based Wind Turbine (WT). The stator winding is directly coupled with the main network, whereas a Back-to-Back converter is installed to connect its rotor to the grid. The proposed control scheme is composed of Recurrent High Order Neural Network (RHONN) trained with the Extended Kalman Filter (EKF), which is used to build-up the DFIG models. Based on such identifier, the High Order Sliding Mode (HOSM) using Super-Twisting (ST) algorithm is synthesized. To show the potential of the selected scheme, a comparison study considering the NHOSM, Conventional Sliding mode (CSM), and the HOSM control is done. To ensure maximum power extractions and to protect the system, the Maximum Point Power Tracking (MPPT) algorithm and the h control are also implemented. Simulation results demonstrate the effectiveness of the proposed scheme for enhancing robustness, reducing chattering, and improving quality and quantity of the generated power. ©spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE Latin America Transactionsspa
dc.titleNeural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbinesspa
dcterms.bibliographicCitationAbad, G., López, J., Rodríguez, M.A., Marroyo, L., Iwanski, G. Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation (2011) Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation. Cited 973 times. http://onlinelibrary.wiley.com/book/10.1002/9781118104965 ISBN: 978-047076865-5 doi: 10.1002/9781118104965spa
dcterms.bibliographicCitationBeltran, B., Benbouzid, M.E.H., Ahmed-Ali, T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine (2012) IEEE Transactions on Energy Conversion, 27 (2), art. no. 6130597, pp. 261-269. Cited 284 times. doi: 10.1109/TEC.2011.2181515spa
dcterms.bibliographicCitationAbed, N.Y., Kabsha, M.M., Abdlsalam, G.M. Low Voltage Ride-Through protection techniques for DFIG wind generator (2013) IEEE Power and Energy Society General Meeting, art. no. 6673049. Cited 14 times. ISBN: 978-147991303-9 doi: 10.1109/PESMG.2013.6673049spa
dcterms.bibliographicCitationPena, R., Clare, J.C., Asher, G.M. Doubly fed induction generator using back-to-back PWM converters and its application to variablespeed wind-energy generation (1996) IEE Proceedings: Electric Power Applications, 143 (3), pp. 231-241. Cited 2597 times. doi: 10.1049/ip-epa:19960288spa
dcterms.bibliographicCitationPoitiers, F., Bouaouiche, T., Machmoum, M. Advanced control of a doubly-fed induction generator for wind energy conversion (2009) Electric Power Systems Research, 79 (7), pp. 1085-1096. Cited 231 times. doi: 10.1016/j.epsr.2009.01.007spa
dcterms.bibliographicCitationXu, L., Cartwright, P. Direct active and reactive power control of DFIG for wind energy generation (2006) IEEE Transactions on Energy Conversion, 21 (3), pp. 750-758. Cited 674 times. doi: 10.1109/TEC.2006.875472spa
dcterms.bibliographicCitationHuerta, H. Energy-Based Robust Control of Doubly-Fed Induction Generator (2016) Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 40 (1), pp. 23-33. Cited 4 times. http://www.shirazu.ac.ir/en/index.php?page_id=2300 doi: 10.1007/s40998-016-0003-3spa
dcterms.bibliographicCitationSaihi, L., Berbaoui, B., Glaoui, H., Djilali, L., Abdeldjalil, S. Robust sliding mode H∞ controller of DFIG based on variable speed wind energy conversion system (2020) Periodica polytechnica Electrical engineering and computer science, 64 (1), pp. 53-63. Cited 12 times. https://pp.bme.hu/eecs/article/view/14490/8506 doi: 10.3311/PPee.14490spa
dcterms.bibliographicCitationMartinez, M.I., Susperregui, A., Tapia, G., Xu, L. Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages (2013) IET Renewable Power Generation, 7 (4), pp. 370-379. Cited 88 times. doi: 10.1049/iet-rpg.2012.0172spa
dcterms.bibliographicCitationDjilali, L., Sanchez, E.N., Belkheiri, M. Real-time implementation of sliding-mode field-oriented control for a DFIG-based wind turbine (Open Access) (2018) International Transactions on Electrical Energy Systems, 28 (5), art. no. e2539. Cited 27 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-7038 doi: 10.1002/etep.2539spa
dcterms.bibliographicCitationSun, D., Wang, X., Nian, H., Zhu, Z.Q. A Sliding-Mode Direct Power Control Strategy for DFIG under Both Balanced and Unbalanced Grid Conditions Using Extended Active Power (Open Access) (2018) IEEE Transactions on Power Electronics, 33 (2), art. no. 7885559, pp. 1313-1322. Cited 99 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2017.2686980spa
dcterms.bibliographicCitationLevant, A. Sliding order and sliding accuracy in sliding mode control (1993) International Journal of Control, 58 (6), pp. 1247-1263. Cited 2597 times. doi: 10.1080/00207179308923053spa
dcterms.bibliographicCitationZheng, X., Wei, W., Xu, D. Higher-order sliding mode control of DFIG wind energy system under LVRT (2010) Asia-Pacific Power and Energy Engineering Conference, APPEEC, art. no. 5449479. Cited 11 times. ISBN: 978-142444813-5 doi: 10.1109/APPEEC.2010.5449479spa
dcterms.bibliographicCitationXiong, L., Li, P., Wang, J. High-order sliding mode control of DFIG under unbalanced grid voltage conditions (2020) International Journal of Electrical Power and Energy Systems, 117, art. no. 105608. Cited 38 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2019.105608spa
dcterms.bibliographicCitationRuiz-Duarte, J.E., Loukianov, A.G. Output-Feedback Discrete-Time Sliding Mode Control via Disturbance Estimation (2018) Proceedings of IEEE International Workshop on Variable Structure Systems, 2018-July, art. no. 8460442, pp. 13-18. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-153866439-1 doi: 10.1109/VSS.2018.8460442spa
dcterms.bibliographicCitationBenbouhenni, H., Boudjema, Z., Belaidi, A. Neuro-second order sliding mode control of a DFIG supplied by a two-level NSVM inverter for wind turbine system (2018) Iranian Journal of Electrical and Electronic Engineering, 14 (4), pp. 362-373. Cited 12 times. http://ijeee.iust.ac.ir/article-1-1239-en.pdf doi: 10.22068/IJEEE.14.4.362spa
dcterms.bibliographicCitationBarmish, B.R., Leitmann, G. On Ultimate Boundedness Control of Uncertain Systems in the Absence of Matching Assumptions (1982) IEEE Transactions on Automatic Control, 27 (1), pp. 153-158. Cited 279 times. doi: 10.1109/TAC.1982.1102862spa
dcterms.bibliographicCitationCastaneda, C.E., Loukianov, A.G., Sanchez, E.N., Castillo-Toledo, B. Discrete-time neural sliding-mode block control for a DC motor with controlled flux (2012) IEEE Transactions on Industrial Electronics, 59 (2), art. no. 5942161, pp. 1194-1207. Cited 52 times. doi: 10.1109/TIE.2011.2161246spa
dcterms.bibliographicCitationSenthilnathan, K., Iyswarya Annapoorani, K. A review on back-to-back converters in permanent magnet synchronous generator based wind energy conversion system (2016) Indonesian Journal of Electrical Engineering and Computer Science, 2 (3), pp. 583-591. Cited 11 times. http://www.iaescore.com/journals/index.php/IJEECS/article/download/428/317 doi: 10.11591/ijeecs.v2.i3.pp583-591spa
dcterms.bibliographicCitationRuiz-Cruz, R., Sanchez, E.N., Loukianov, A.G., Ruz-Hernandez, J.A. Real-time neural inverse optimal control for a wind generator (2019) IEEE Transactions on Sustainable Energy, 10 (3), art. no. 8424432, pp. 1172-1183. Cited 28 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165391 doi: 10.1109/TSTE.2018.2862628spa
dcterms.bibliographicCitationDjilali, L., Sanchez, E.N., Belkheiri, M. First and High Order Sliding Mode Control of a DFIG-Based Wind Turbine (2020) Electric Power Components and Systems, 48 (1-2), pp. 105-116. Cited 9 times. www.tandf.co.uk/journals/titles/15325008.asp doi: 10.1080/15325008.2020.1758836spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/TLA.2022.9661461
dc.subject.keywordsAsynchronous Generators;spa
dc.subject.keywordsPowerpoint;spa
dc.subject.keywordsEnergy Conversionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.