Mostrar el registro sencillo del ítem

dc.contributor.authorRajagopalan, Arul
dc.contributor.authorNagarajan, Karthik
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorDhanasekaran, Seshathiri
dc.contributor.authorKareem, Inayathullah Abdul
dc.contributor.authorPerumal, Angalaeswari Sendraya
dc.contributor.authorLakshmaiya, Natrayan
dc.contributor.authorParamasivam, Prabhu
dc.date.accessioned2023-07-21T20:50:56Z
dc.date.available2023-07-21T20:50:56Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationRajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., ... & Paramasivam, P. (2022). Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer. Energies, 15(23), 9024.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12396
dc.description.abstractOptimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids under grid-connected, as well as isolated modes. The authors presented a new optimization algorithm, i.e., Oppositional Gradient-based Grey Wolf Optimizer (OGGWO) in the current study to elucidate the optimal operation in microgrids that is loaded with sustainable, as well as unsustainable energy sources. With the integration of non-Renewable Energy Sources (RES) with microgrids, environmental pollution is reduced. The current study proposes this hybrid algorithm to avoid stagnation and achieve premature convergence. Having been strategized as a bi-objective optimization problem, the ultimate aim of this model’s optimal operation is to cut the costs incurred upon operations and reduce the emission of pollutants in a 24-h scheduling period. In the current study, the authors considered a Micro Turbine (MT) followed by a Wind Turbine (WT), a battery unit and a Fuel Cell (FC) as storage devices. The microgrid was assumed under the grid-connected mode. The authors validated the proposed algorithm upon three different scenarios to establish the former’s efficiency and efficacy. In addition to these, the optimization results attained from the proposed technique were also compared with that of the results from techniques implemented earlier. According to the outcomes, it can be inferred that the presented OGGWO approach outperformed other methods in terms of cost mitigation and pollution reduction. © 2022 by the authors.spa
dc.format.extent24 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergiesspa
dc.titleMulti-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizerspa
dcterms.bibliographicCitationNagarajan, K., Rajagopalan, A., Angalaeswari, S., Natrayan, L., Mammo, W.D. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm (Open Access) (2022) Computational Intelligence and Neuroscience, 2022, art. no. 6461690. Cited 35 times. http://www.hindawi.com/journals/cin doi: 10.1155/2022/6461690spa
dcterms.bibliographicCitationKarthik, N., Parvathy, A.K., Arul, R. A review of optimal operation of microgrids (2020) International Journal of Electrical and Computer Engineering, 10 (3), pp. 2842-2849. Cited 6 times. http://ijece.iaescore.com/index.php/IJECE/article/view/12673/pdf doi: 10.11591/ijece.v10i3.pp2842-2849spa
dcterms.bibliographicCitationKonstantinopoulos, S.A., Anastasiadis, A.G., Vokas, G.A., Kondylis, G.P., Polyzakis, A. Optimal management of hydrogen storage in stochastic smart microgrid operation (2018) International Journal of Hydrogen Energy, 43 (1), pp. 490-499. Cited 45 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2017.06.116spa
dcterms.bibliographicCitationAghajani, G., Yousefi, N. Multi-objective optimal operation in a micro-grid considering economic and environmental goals (2019) Evolving Systems, 10 (2), pp. 239-248. Cited 6 times. http://www.springer.com/engineering/journal/12530 doi: 10.1007/s12530-018-9219-yspa
dcterms.bibliographicCitationLv, T., Ai, Q., Zhao, Y. A bi-level multi-objective optimal operation of grid-connected microgrids (2016) Electric Power Systems Research, 131, pp. 60-70. Cited 83 times. doi: 10.1016/j.epsr.2015.09.018spa
dcterms.bibliographicCitationKim, H.J., Kim, M.K., Lee, J.W. A two-stage stochastic p-robust optimal energy trading management in microgrid operation considering uncertainty with hybrid demand response (2021) International Journal of Electrical Power and Energy Systems, 124, art. no. 106422. Cited 42 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106422spa
dcterms.bibliographicCitationGad, Y., Diab, H., Abdelsalam, M., Galal, Y. Smart energy management system of environmentally friendly microgrid based on grasshopper optimization technique (2020) Energies, 13 (18), art. no. 5000. Cited 13 times. https://www.mdpi.com/1996-1073/13/19/5000 doi: 10.3390/en13195000spa
dcterms.bibliographicCitationJain, D.K., Tyagi, S.K.S., Neelakandan, S., Prakash, M., Natrayan, L. Metaheuristic Optimization-Based Resource Allocation Technique for Cybertwin-Driven 6G on IoE Environment (2022) IEEE Transactions on Industrial Informatics, 18 (7), pp. 4884-4892. Cited 55 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2021.3138915spa
dcterms.bibliographicCitationAhmed, D., Ebeed, M., Ali, A., Alghamdi, A.S., Kamel, S. Multi-objective energy management of a micro-grid considering stochastic nature of load and renewable energy resources (2021) Electronics (Switzerland), 10 (4), art. no. 403, pp. 1-22. Cited 32 times. https://www.mdpi.com/2079-9292/10/4/403/pdf doi: 10.3390/electronics10040403spa
dcterms.bibliographicCitationMansouri, S.A., Ahmarinejad, A., Nematbakhsh, E., Javadi, M.S., Jordehi, A.R., Catalão, J.P.S. Energy management in microgrids including smart homes: A multi-objective approach (2021) Sustainable Cities and Society, 69, art. no. 102852. Cited 97 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2021.102852spa
dcterms.bibliographicCitationMandal, S., Mandal, K.K. Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution (2020) Renewable Energy Focus, 34, pp. 129-141. Cited 32 times. https://www.sciencedirect.com/journal/renewable-energy-focus doi: 10.1016/j.ref.2020.05.002spa
dcterms.bibliographicCitationAbdolrasol, M.G.M., Hannan, M.A., Suhail Hussain, S.M., Ustun, T.S., Sarker, M.R., Ker, P.J. Energy management scheduling for microgrids in the virtual power plant system using artificial neural networks (2021) Energies, 14 (20), art. no. 6507. Cited 20 times. https://www.mdpi.com/1996-1073/14/20/6507/pdf doi: 10.3390/en14206507spa
dcterms.bibliographicCitationMajumder, I., Dash, P.K., Dhar, S. Real-time Energy Management for PV–battery–wind based microgrid using on-line sequential Kernel Based Robust Random Vector Functional Link Network (2021) Applied Soft Computing, 101, art. no. 107059. Cited 11 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.107059spa
dcterms.bibliographicCitationKarthik, N., Parvathy, A.K., Arul, R., Jayapragash, R., Narayanan, S. Economic load dispatch in a microgrid using Interior Search Algorithm (2019) 2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019, art. no. 8960249. Cited 8 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8956176 ISBN: 978-153868190-9 doi: 10.1109/i-PACT44901.2019.8960249spa
dcterms.bibliographicCitationAghajani, G.R., Shayanfar, H.A., Shayeghi, H. Demand side management in a smart micro-grid in the presence of renewable generation and demand response (2017) Energy, 126, pp. 622-637. Cited 206 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.03.051spa
dcterms.bibliographicCitationJasim, A.M., Jasim, B.H., Kraiem, H., Flah, A. A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System (Open Access) (2022) Sustainability (Switzerland), 14 (16), art. no. 10158. Cited 16 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su141610158spa
dcterms.bibliographicCitationYin, N., Abbassi, R., Jerbi, H., Rezvani, A., Müller, M. A day-ahead joint energy management and battery sizing framework based on θ-modified krill herd algorithm for a renewable energy-integrated microgrid (2021) Journal of Cleaner Production, 282, art. no. 124435. Cited 27 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.124435spa
dcterms.bibliographicCitationHan, Y., Yang, H., Li, Q., Chen, W., Zare, F., Guerrero, J.M. Mode-triggered droop method for the decentralized energy management of an islanded hybrid PV/hydrogen/battery DC microgrid (Open Access) (2020) Energy, 199, art. no. 117441. Cited 43 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2020.117441spa
dcterms.bibliographicCitationHan, Y., Zhang, G., Li, Q., You, Z., Chen, W., Liu, H. Hierarchical energy management for PV/hydrogen/battery island DC microgrid (2019) International Journal of Hydrogen Energy, pp. 5507-5516. Cited 84 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2018.08.135spa
dcterms.bibliographicCitationKafetzis, A., Ziogou, C., Panopoulos, K.D., Papadopoulou, S., Seferlis, P., Voutetakis, S. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen (Open Access) (2020) Renewable and Sustainable Energy Reviews, 134, art. no. 110118. Cited 40 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.110118spa
dcterms.bibliographicCitationJordehi, A.R., Javadi, M.S., Catalão, J.P.S. Energy management in microgrids with battery swap stations and var compensators (Open Access) (2020) Journal of Cleaner Production, 272, art. no. 122943. Cited 24 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.122943spa
dcterms.bibliographicCitationSedighizadeh, M., Esmaili, M., Mohammadkhani, N. Stochastic multi-objective energy management in residential microgrids with combined cooling, heating, and power units considering battery energy storage systems and plug-in hybrid electric vehicles (2018) Journal of Cleaner Production, 195, pp. 301-317. Cited 120 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2018.05.103spa
dcterms.bibliographicCitationLuo, L., Abdulkareem, S.S., Rezvani, A., Miveh, M.R., Samad, S., Aljojo, N., Pazhoohesh, M. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty (2020) Journal of Energy Storage, 28, art. no. 101306. Cited 169 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101306spa
dcterms.bibliographicCitationFarinis, G.Κ., Kanellos, F.D. Integrated energy management system for Microgrids of building prosumers (Open Access) (2021) Electric Power Systems Research, 198, art. no. 107357. Cited 25 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2021.107357spa
dcterms.bibliographicCitationKakran, S., Chanana, S. Operation management of a renewable microgrid supplying to a residential community under the effect of incentive-based demand response program (Open Access) (2019) International Journal of Energy and Environmental Engineering, 10 (1), pp. 121-135. Cited 15 times. http://www.journal-ijeee.com/ doi: 10.1007/s40095-018-0286-4spa
dcterms.bibliographicCitationDe, M., Das, G., Mandal, K.K. An effective energy flow management in grid-connected solar–wind-microgrid​ system incorporating economic and environmental generation scheduling using a meta-dynamic approach-based multiobjective flower pollination algorithm (2021) Energy Reports, 7, pp. 2711-2726. Cited 16 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.04.006spa
dcterms.bibliographicCitationDey, B., Bhattacharyya, B., Srivastava, A., Shivam, K. Solving energy management of renewable integrated microgrid systems using crow search algorithm (Open Access) (2020) Soft Computing, 24 (14), pp. 10433-10454. Cited 32 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=h83ak0wtmr5uxkah9j5m&referrer=parent&backto=browsepublicationsresults,466,533; doi: 10.1007/s00500-019-04553-8spa
dcterms.bibliographicCitationSarshar, J., Moosapour, S.S., Joorabian, M. Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting (2017) Energy, 139, pp. 680-693. Cited 76 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.07.138spa
dcterms.bibliographicCitationAbdel-Basset, M., El-Shahat, D., El-henawy, I., de Albuquerque, V.H.C., Mirjalili, S. A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection (Open Access) (2020) Expert Systems with Applications, 139, art. no. 112824. Cited 200 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2019.112824spa
dcterms.bibliographicCitationPradhan, M., Roy, P.K., Pal, T. Grey wolf optimization applied to economic load dispatch problems (Open Access) (2016) International Journal of Electrical Power and Energy Systems, 83, pp. 325-334. Cited 195 times. doi: 10.1016/j.ijepes.2016.04.034spa
dcterms.bibliographicCitationKhalilpourazari, S., Hashemi Doulabi, H., Özyüksel Çiftçioğlu, A., Weber, G.-W. Gradient-based grey wolf optimizer with Gaussian walk: Application in modelling and prediction of the COVID-19 pandemic (2021) Expert Systems with Applications, 177, art. no. 114920. Cited 58 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2021.114920spa
dcterms.bibliographicCitationKarthik, N., Parvathy, A.K., Arul, R., Padmanathan, K. Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources (Open Access) (2021) International Journal of Energy and Environmental Engineering, 12 (4), pp. 641-678. Cited 19 times. http://www.journal-ijeee.com/ doi: 10.1007/s40095-021-00397-xspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/en15239024
dc.subject.keywordsGrid;spa
dc.subject.keywordsPower Sharing;spa
dc.subject.keywordsInvertersspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.