Mostrar el registro sencillo del ítem
Mitigating fluctuations of wind power generation using superconducting magnetic energy storage: A passivity-based approach
dc.contributor.author | Gil-Gonzalez, Walter | |
dc.contributor.author | Garces, Alejandro | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.date.accessioned | 2023-07-21T20:49:32Z | |
dc.date.available | 2023-07-21T20:49:32Z | |
dc.date.issued | 2019 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Gil-González, W., Garcés, A., & Montoya, O. D. (2019, November). Mitigating fluctuations of wind power generation using superconducting magnetic energy storage: a passivity-based approach. In 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (pp. 1-6). IEEE. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12387 | |
dc.description.abstract | Abstract This paper presents the control of the active and reactive power of a superconducting magnetic energy storage (SMES) system for compensating fluctuations of a power system with high penetration of wind energy during extreme scenarios of wind gusts. The wind energy conversion system (WECS) is a Type-A turbine with squirrel cage induction generator (SCIG) and a capacitor bank. A passivity-based proportional-integral control (PI-PBC) is used that controls the power transfer of the SMES system to the power grid. The proposed controller is designed with two main objectives: First, to deliver (or absorb) a suitable active power to (or from) the power system, and second, to regulate the voltage of the WECS. The proposed PI-PBC guarantees asymptotically stability in closed-loop and exploits the advantages of the proportional-integral (PI) actions. Also, it presents a superior performance when it is compared to a conventional PI controller and a proportional feedback linearization controller. Simulation results carried-out in MATLAB/SIMULINK demonstrate the advantages of the proposed methodology. © 2019 IEEE. | spa |
dc.format.extent | 7 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | 2019 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2019 | spa |
dc.title | Mitigating fluctuations of wind power generation using superconducting magnetic energy storage: A passivity-based approach | spa |
dcterms.bibliographicCitation | Rahimi, M., Parniani, M. Dynamic behavior and transient stability analysis of fixed speed wind turbines (2009) Renewable Energy, 34 (12), pp. 2613-2624. Cited 46 times. doi: 10.1016/j.renene.2009.06.019 | spa |
dcterms.bibliographicCitation | Aly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T. A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) International Journal of Electrical Power and Energy Systems, 83, pp. 485-494. Cited 58 times. doi: 10.1016/j.ijepes.2016.04.037 | spa |
dcterms.bibliographicCitation | Montoya, O.D., Garcés, A., Serra, F.M. DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) Journal of Energy Storage, 16, pp. 250-258. Cited 33 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.01.014 | spa |
dcterms.bibliographicCitation | Khalid, M., Savkin, A.V. An optimal operation of wind energy storage system for frequency control based on model predictive control (2012) Renewable Energy, 48, pp. 127-132. Cited 69 times. doi: 10.1016/j.renene.2012.03.038 | spa |
dcterms.bibliographicCitation | Mousavi G, S.M., Faraji, F., Majazi, A., Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology (Open Access) (2017) Renewable and Sustainable Energy Reviews, 67, pp. 477-490. Cited 293 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.09.060 | spa |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D. Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach (2019) Ain Shams Engineering Journal, 10 (2), pp. 369-378. Cited 10 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.01.001 | spa |
dcterms.bibliographicCitation | Wang, S., Jin, J. Design and Analysis of a Fuzzy Logic Controlled SMES System (2014) IEEE Transactions on Applied Superconductivity, 24 (5), art. no. 6882187. Cited 27 times. doi: 10.1109/TASC.2014.2348562 | spa |
dcterms.bibliographicCitation | Liu, C., Hu, C., Li, X., Chen, Y., Chen, M., Xu, D. Applying SMES to smooth short-term power fluctuations in wind farms (2008) IECON Proceedings (Industrial Electronics Conference), art. no. 4758498, pp. 3352-3357. Cited 21 times. ISBN: 978-142441766-7 doi: 10.1109/IECON.2008.4758498 | spa |
dcterms.bibliographicCitation | Bhatt, P., Ghoshal, S.P., Roy, R. Coordinated control of TCPS and SMES for frequency regulation of interconnected restructured power systems with dynamic participation from DFIG based wind farm (2012) Renewable Energy, 40 (1), pp. 40-50. Cited 72 times. doi: 10.1016/j.renene.2011.08.035 | spa |
dcterms.bibliographicCitation | Kinjo, T., Senjyu, T., Urasaki, N., Fujita, H. Terminal-voltage and output-power regulation of wind-turbine generator by series and parallel compensation using SMES (2006) IEE Proceedings: Generation, Transmission and Distribution, 153 (3), pp. 276-282. Cited 70 times. doi: 10.1049/ip-gtd:20045189 | spa |
dcterms.bibliographicCitation | Shiddiq Yunus, A.M., Abu-Siada, A., Masoum, M.A.S. Improvement of LVRT capability of variable speed wind turbine generators using SMES unit (2011) 2011 IEEE PES Innovative Smart Grid Technologies, ISGT Asia 2011 Conference: Smarter Grid for Sustainable and Affordable Energy Future, art. no. 6167122. Cited 22 times. ISBN: 978-145770875-6 doi: 10.1109/ISGT-Asia.2011.6167122 | spa |
dcterms.bibliographicCitation | Lin, X., Lei, Y. Coordinated Control Strategies for SMES-Battery Hybrid Energy Storage Systems (2017) IEEE Access, 5, art. no. 8064633, pp. 23452-23465. Cited 50 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2017.2761889 | spa |
dcterms.bibliographicCitation | Golestan, S., Guerrero, J.M., Vasquez, J.C. Three-Phase PLLs: A Review of Recent Advances (2017) IEEE Transactions on Power Electronics, 32 (3), art. no. 7467498, pp. 1894-1907. Cited 512 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2016.2565642 | spa |
dcterms.bibliographicCitation | Montoya, O.D., Garcés, A., Espinosa-Pérez, G. A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (Open Access) (2018) Journal of Energy Storage, 16, pp. 259-268. Cited 31 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.01.018 | spa |
dcterms.bibliographicCitation | Ortega, R., Van der Schaft, A., Maschke, B., Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (Open Access) (2002) Automatica, 38 (4), pp. 585-596. Cited 1305 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/S0005-1098(01)00278-3 | spa |
dcterms.bibliographicCitation | Pérez, M., Ortega, R., Espinoza, J.R. Passivity-Based PI Control of Switched Power Converters (Open Access) (2004) IEEE Transactions on Control Systems Technology, 12 (6), pp. 881-890. Cited 109 times. doi: 10.1109/TCST.2004.833628 | spa |
dcterms.bibliographicCitation | Aranovskiy, S., Ortega, R., Cisneros, R. A robust PI passivity-based control of nonlinear systems and its application to temperature regulation (2016) International Journal of Robust and Nonlinear Control, 26 (10), pp. 2216-2231. Cited 9 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1239 doi: 10.1002/rnc.3404 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1109/ROPEC48299.2019.9057111 | |
dc.subject.keywords | Asynchronous Generators; | spa |
dc.subject.keywords | Powerpoint; | spa |
dc.subject.keywords | Energy Conversion | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.