Mostrar el registro sencillo del ítem

dc.contributor.authorRamos, Helena M.
dc.contributor.authorCoronado-Hernández, Oscar E.
dc.contributor.authorMorgado, Pedro A.
dc.contributor.authorSimão, Mariana
dc.date.accessioned2023-07-21T20:49:15Z
dc.date.available2023-07-21T20:49:15Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationRamos, H. M., Coronado-Hernández, O. E., Morgado, P. A., & Simão, M. (2023). Mathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Mode. Water, 15(11), 2034.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12385
dc.description.abstractOver the past few years, there has been significant interest in the importance of reversible hydro-pumping systems due to their favorable flexibility and economic and environmental characteristics. When designing reversible lines, it is crucial to consider dynamic effects and corresponding extreme pressures that may occur during normal and emergency operating scenarios. This research describes essentially the turbine operation, although various boundary elements are mathematically formulated and presented to provide an understanding of the system complexity. Different numerical approaches are presented, based on the 1D method of characteristics (MOC) for the long hydraulic circuit, the dynamic turbine runner simulation technique for the behavior of the power station in turbine mode and the interaction with the fluid in the penstock, and a CFD model (2D and 3D) to analyze the flow behavior crossing the runner through the velocity fields and pressure contours. Additionally, the simulation results have been validated by experimental tests on different setups characterized by long conveyance systems, consisting of a small scale of pumps as turbines (at IST laboratory) and classical reaction turbines (at LNEC laboratory). Mathematical models, together with an intensive campaign of experiments, allow for the estimation of dynamic effects related to the extreme transient pressures, the fluid-structure interaction with rotational speed variation, and the change in the flow. In some cases, the runaway conditions can cause an overspeed of 2–2.5 of the rated rotational speed (NR) and an overpressure of 40–65% of the rated head (HR), showing significant impacts on the pressure wave propagation along the entire hydraulic circuit. Sensitivity analyses based on systematic numerical simulations of PATs (radial and axial types) and reaction turbines (Francis and Kaplan types) and comparisons with experiments are discussed. These evaluations demonstrate that the full-load rejection scenario can be dangerous for turbomachinery with low specific-speed (ns) values, in particular when associated with long penstocks and fast guide vane (or control valve) closing maneuver. © 2023 by the authors.spa
dc.format.extent27 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater (Switzerland)spa
dc.titleMathematic Modelling of a Reversible Hydropower System: Dynamic Effects in Turbine Modespa
dcterms.bibliographicCitationBurek, P., Satoh, Y., Fischer, G., Kahil, T., Jimenez, L., Scherzer, A., Tramberend, S., (...), Flörke, M. (2016) Water Futures and Solution: Fast Track Initiative (Final Report). Cited 156 times. IIASA, Laxemburg, Austriaspa
dcterms.bibliographicCitationSimão, M., Ramos, H.M. Hybrid pumped hydro storage energy solutions towards wind and PV integration: Improvement on flexibility, reliability and energy costs (2020) Water (Switzerland), 12 (9), art. no. 2457. Cited 20 times. https://res.mdpi.com/d_attachment/water/water-12-02457/article_deploy/water-12-02457-v2.pdf doi: 10.3390/w12092457spa
dcterms.bibliographicCitationRogner, M., Troja, N. (2018) The World’s Water Battery: Pumped Hydropower Storage and the Clean Energy Transition. Cited 32 times. International Hydropower Association, London, UKspa
dcterms.bibliographicCitationPérez-Sánchez, M., Sánchez-Romero, F.J., Ramos, H.M., López-Jiménez, P.A. Energy recovery in existing water networks: Towards greater sustainability (2017) Water (Switzerland), 9 (2), art. no. 97. Cited 99 times. http://www.mdpi.com/2073-4441/9/2/97/pdf doi: 10.3390/w9020097 View at Publisherspa
dcterms.bibliographicCitationPérez-Sánchez, M., Sánchez-Romero, F.J., Ramos, H.M., López-Jiménez, P.A. Energy recovery in existing water networks: Towards greater sustainability (2017) Water (Switzerland), 9 (2), art. no. 97. Cited 99 times. http://www.mdpi.com/2073-4441/9/2/97/pdf doi: 10.3390/w9020097spa
dcterms.bibliographicCitationCarravetta, A., Del Giudice, G., Fecarotta, O., Gallagher, J., Cristina Morani, M., Ramos, H.M. Potential Energy, Economic, and Environmental Impacts of Hydro Power Pressure Reduction on the Water-Energy-Food Nexus (2022) Journal of Water Resources Planning and Management, 148 (5), art. no. 04022012. Cited 5 times. https://ascelibrary.org/journal/jwrmd5 doi: 10.1061/(ASCE)WR.1943-5452.0001541spa
dcterms.bibliographicCitationFontanella, S., Fecarotta, O., Molino, B., Cozzolino, L., Morte, R.D. A performance prediction model for pumps as turbines (PATs) (2020) Water (Switzerland), 12 (4), art. no. 1175. Cited 14 times. https://www.mdpi.com/2073-4441/12/4/1175 doi: 10.3390/W12041175spa
dcterms.bibliographicCitationDe Marchis, M., Milici, B., Volpe, R., Messineo, A. Energy saving in water distribution network through pump as turbine generators: Economic and environmental analysis (2016) Energies, 9 (11), art. no. 877. Cited 54 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en9110877spa
dcterms.bibliographicCitationLima, G.M., Luvizotto, E., Brentan, B.M. Selection and location of Pumps as Turbines substituting pressure reducing valves (2017) Renewable Energy, 109, pp. 392-405. Cited 54 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2017.03.056spa
dcterms.bibliographicCitationPérez-Sánchez, M., Sánchez-Romero, F.J., Ramos, H.M., López-Jiménez, P.A. Improved planning of energy recovery in water systems using a new analytic approach to PAT performance curves (2020) Water (Switzerland), 12 (2), art. no. 468. Cited 26 times. https://res.mdpi.com/d_attachment/water/water-12-00468/article_deploy/water-12-00468-v2.pdf doi: 10.3390/w12020468spa
dcterms.bibliographicCitationRamos, H., Almeida, A.B. Dynamic orifice model on waterhammer analysis of high or medium heads of small hydropower schemes (2001) Journal of Hydraulic Research, 39 (4), pp. 429-436. Cited 34 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221680109499847spa
dcterms.bibliographicCitationRamos, H., de Almeida, A.B. Parametric analysis of water-hammer effects in small hydro schemes (2002) Journal of Hydraulic Engineering, 128 (7), pp. 689-696. Cited 32 times. doi: 10.1061/(ASCE)0733-9429(2002)128:7(689)spa
dcterms.bibliographicCitationBoulos, P.F., Karney, B.W., Wood, D.J., Lingireddy, S. Hydraulic transient guidelines for protecting water distribution systems (Open Access) (2005) Journal / American Water Works Association, 97 (5), pp. 111-124. Cited 121 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1551-8833 doi: 10.1002/j.1551-8833.2005.tb10892.xspa
dcterms.bibliographicCitationChaudhry, M.H. Applied hydraulic transients (Open Access) (2014) Applied Hydraulic Transients, 9781461485384, pp. 1-583. Cited 510 times. http://dx.doi.org/10.1007/978-1-4614-8538-4 ISBN: 978-146148538-4; 1461485371; 978-146148537-7 doi: 10.1007/978-1-4614-8538-4spa
dcterms.bibliographicCitationPérez-Sánchez, M., López-Jiménez, P.A., Ramos, H.M. PATs operating in water networks under unsteady flow conditions: Control valve manoeuvre and overspeed effect (Open Access) (2018) Water (Switzerland), 10 (4), art. no. 529. Cited 13 times. http://www.mdpi.com/2073-4441/10/4/529/pdf doi: 10.3390/w10040529spa
dcterms.bibliographicCitationLima, G.M., Luvizotto, E. Method to estimate complete curves of hydraulic pumps through the polymorphism of existing curves (2017) Journal of Hydraulic Engineering, 143 (8), art. no. 04017017. Cited 9 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001301spa
dcterms.bibliographicCitationRamos, H., Borga, A. Pumps as turbines: An unconventional solution to energy production (Open Access) (1999) Urban Water, 1 (3), pp. 261-263. Cited 144 times. www.elsevier.com/inca/publications/store/6/0/1/3/4/8 doi: 10.1016/s1462-0758(00)00016-9spa
dcterms.bibliographicCitationSimão, M., Pérez-Sánchez, M., Carravetta, A., López-Jiménez, P., Ramos, H.M. Velocities in a centrifugal PAT operation: Experiments and CFD analyses (Open Access) (2018) Fluids, 3 (1), art. no. 3. Cited 11 times. https://www.mdpi.com/2311-5521/3/1/4/pdf doi: 10.3390/fluids3010003spa
dcterms.bibliographicCitationSimão, M., Pérez-Sánchez, M., Carravetta, A., Ramos, H.M. Flow conditions for PATS operating in parallel: Experimental and numerical analyses (Open Access) (2019) Energies, 12 (5), art. no. 901. Cited 12 times. https://www.mdpi.com/1996-1073/12/5 doi: 10.3390/en12050901spa
dcterms.bibliographicCitationPérez-Sánchez, M., Simão, M., López-Jiménez, P.A., Ramos, H.M. CFD Analyses and experiments in a pat modeling: pressure variation and system efficiency (2017) Fluids, 2 (4), art. no. 2040051. Cited 10 times. https://www.mdpi.com/2311-5521/2/4/51/pdf doi: 10.3390/fluids2040051spa
dcterms.bibliographicCitationLiu, K., Yang, F., Yang, Z., Zhu, Y., Cheng, Y. Runner lifting-up during load rejection transients of a Kaplan turbine: Flow mechanism and solution (2019) Energies, 12 (24), art. no. 4781. Cited 11 times. https://www.mdpi.com/1996-1073/12/24 doi: 10.3390/en12244781spa
dcterms.bibliographicCitationZhang, M., Feng, J., Zhao, Z., Zhang, W., Zhang, J., Xu, B. A 1D-3D Coupling Model to Evaluate Hydropower Generation System Stability (Open Access) (2022) Energies, 15 (19), art. no. 7089. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15197089spa
dcterms.bibliographicCitationMahfoud, R.J., Alkayem, N.F., Zhang, Y., Zheng, Y., Sun, Y., Alhelou, H.H. Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives (2023) Renewable and Sustainable Energy Reviews, 178, art. no. 113267. Cited 2 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2023.113267spa
dcterms.bibliographicCitationSamora, I., Hasmatuchi, V., Münch-Alligné, C., Franca, M.J., Schleiss, A.J., Ramos, H.M. Experimental characterization of a five blade tubular propeller turbine for pipe inline installation (Open Access) (2016) Renewable Energy, 95, pp. 356-366. Cited 72 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2016.04.023spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/w15112034
dc.subject.keywordsMicro-Hydro;spa
dc.subject.keywordsHydropower;spa
dc.subject.keywordsCentrifugal Pumpsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.