Mostrar el registro sencillo del ítem

dc.contributor.authorMeza, Jhacson
dc.contributor.authorRomero, Lenny A.
dc.contributor.authorMarrugo, Andres G.
dc.date.accessioned2023-07-21T20:48:50Z
dc.date.available2023-07-21T20:48:50Z
dc.date.issued2021
dc.date.submitted2023
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12383
dc.description.abstractDespite the attention marker-less pose estimation has attracted in recent years, marker-based approaches still provide unbeatable accuracy under controlled environmental conditions. Thus, they are used in many fields such as robotics or biomedical applications but are primarily implemented through classical approaches, which require lots of heuristics and parameter tuning for reliable performance under different environments. In this work, we propose MarkerPose, a robust, real-time pose estimation system based on a planar target of three circles and a stereo vision system. MarkerPose is meant for high-accuracy pose estimation applications. Our method consists of two deep neural networks for marker point detection. A SuperPoint-like network for pixel-level accuracy keypoint localization and classification, and we introduce EllipSegNet, a lightweight ellipse segmentation network for sub-pixel-level accuracy keypoint detection. The marker's pose is estimated through stereo triangulation. The target point detection is robust to low lighting and motion blur conditions. We compared MarkerPose with a detection method based on classical computer vision techniques using a robotic arm for validation. The results show our method provides better accuracy than the classical technique. Finally, we demonstrate the suitability of MarkerPose in a 3D freehand ultrasound system, which is an application where highly accurate pose estimation is required. Code is available in Python and C++ at https://github.com/jhacsonmeza/MarkerPose. © 2021 IEEE.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshopsspa
dc.titleMarkerPose: Robust real-time planar target tracking for accurate stereo pose estimationspa
dcterms.bibliographicCitationAndriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., Schiele, B. PoseTrack: A Benchmark for Human Pose Estimation and Tracking (2018) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, art. no. 8578640, pp. 5167-5176. Cited 237 times. ISBN: 978-153866420-9 doi: 10.1109/CVPR.2018.00542spa
dcterms.bibliographicCitationBasafa, E., Foroughi, P., Hossbach, M., Bhanushali, J., Stolka, P. Visual tracking for multi-modality computer-assisted image guidance (2017) Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10135, art. no. 101352S. Cited 7 times. http://spie.org/x1848.xml ISBN: 978-151060715-6 doi: 10.1117/12.2254362spa
dcterms.bibliographicCitationBrown, A., Uneri, A., Silva, T.D., Manbachi, A., Siewerdsen, J.H. Design and validation of an open-source library of dynamic reference frames for research and education in optical tracking (2018) Journal of Medical Imaging, 5 (2), art. no. 021215. Cited 11 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.5.2.021215spa
dcterms.bibliographicCitationChen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (2018) IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (4), pp. 834-848. Cited 10239 times. doi: 10.1109/TPAMI.2017.2699184spa
dcterms.bibliographicCitationDetone, D., Malisiewicz, T., Rabinovich, A. SuperPoint: Self-supervised interest point detection and description (2018) IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018-June, art. no. 8575521, pp. 337-349. Cited 873 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-153866100-0 doi: 10.1109/CVPRW.2018.00060spa
dcterms.bibliographicCitationGe, L., Ren, Z., Li, Y., Xue, Z., Wang, Y., Cai, J., Yuan, J. 3D hand shape and pose estimation from a single RGB image (2019) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, art. no. 8953612, pp. 10825-10834. Cited 234 times. ISBN: 978-172813293-8 doi: 10.1109/CVPR.2019.01109spa
dcterms.bibliographicCitationGupta, A., Thakkar, K., Gandhi, V., Narayanan, P.J. Nose, Eyes and Ears: Head Pose Estimation by Locating Facial Keypoints (Open Access) (2019) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, art. no. 8683503, pp. 1977-1981. Cited 29 times. ISBN: 978-147998131-1 doi: 10.1109/ICASSP.2019.8683503spa
dcterms.bibliographicCitationHe, K., Gkioxari, G., Dollar, P., Girshick, R. Mask R-CNN (Open Access) (2017) Proceedings of the IEEE International Conference on Computer Vision, 2017-October, art. no. 8237584, pp. 2980-2988. Cited 13335 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000149 ISBN: 978-153861032-9 doi: 10.1109/ICCV.2017.322spa
dcterms.bibliographicCitationHu, D., Detone, D., Malisiewicz, T. Deep charuco: Dark charuco marker pose estimation (2019) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, art. no. 8953882, pp. 8428-8436. Cited 40 times. ISBN: 978-172813293-8 doi: 10.1109/CVPR.2019.00863spa
dcterms.bibliographicCitationHuang, Q., Zeng, Z. A Review on Real-Time 3D Ultrasound Imaging Technology (2017) BioMed Research International, 2017, art. no. 6027029. Cited 168 times. http://www.hindawi.com/journals/biomed/ doi: 10.1155/2017/6027029spa
dcterms.bibliographicCitationKam, H.C., Yu, Y.K., Wong, K.H. An improvement on ArUco marker for pose tracking using kalman filter (Open Access) (2018) Proceedings - 2018 IEEE/ACIS 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2018, art. no. 8441049, pp. 65-69. Cited 25 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8422066 ISBN: 978-153865889-5 doi: 10.1109/SNPD.2018.8441049spa
dcterms.bibliographicCitationKim, J., Jeong, Y., Lee, H., Yun, H. Marker-based structural displacement measurement models with camera movement error correction using image matching and anomaly detection (Open Access) (2020) Sensors (Switzerland), 20 (19), art. no. 5676, pp. 1-24. Cited 8 times. https://www.mdpi.com/1424-8220/20/19/5676/pdfspa
dcterms.bibliographicCitationLee, J.Y., Lee, C.-S. Path planning for SCARA robot based on marker detection using feature extraction and, labelling (Open Access) (2018) International Journal of Computer Integrated Manufacturing, 31 (8), pp. 769-776. Cited 7 times. http://www.tandfonline.com/loi/tcim20 doi: 10.1080/0951192X.2018.1429669spa
dcterms.bibliographicCitationNath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., Mathis, M.W. Using DeepLabCut for 3D markerless pose estimation across species and behaviors (Open Access) (2019) Nature Protocols, 14 (7), pp. 2152-2176. Cited 415 times. http://www.natureprotocols.com/ doi: 10.1038/s41596-019-0176-0spa
dcterms.bibliographicCitationRedmon, J., Divvala, S., Girshick, R., Farhadi, A. You only look once: Unified, real-time object detection (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780460, pp. 779-788. Cited 22811 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.91spa
dcterms.bibliographicCitationRen, S., He, K., Girshick, R., Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (Open Access) (2017) IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (6), art. no. 7485869, pp. 1137-1149. Cited 16494 times. doi: 10.1109/TPAMI.2016.2577031spa
dcterms.bibliographicCitationSarlin, P.-E., Detone, D., Malisiewicz, T., Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural Networks (Open Access) (2020) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, art. no. 9157489, pp. 4937-4946. Cited 644 times. doi: 10.1109/CVPR42600.2020.00499spa
dcterms.bibliographicCitationWang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J. Normalized object coordinate space for category-level 6D object pose and size estimation (Open Access) (2019) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, art. no. 8953761, pp. 2637-2646. Cited 267 times. ISBN: 978-172813293-8 doi: 10.1109/CVPR.2019.00275spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/CVPRW53098.2021.00141
dc.subject.keywordsObject Detection;spa
dc.subject.keywordsDeep Learning;spa
dc.subject.keywordsIOUspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.