Mostrar el registro sencillo del ítem

dc.contributor.authorPeña-Consuegra, Jorge
dc.contributor.authorPagnola, Marcelo R.
dc.contributor.authorUseche, Jairo
dc.contributor.authorMadhukar, Pagidi
dc.contributor.authorSaccone, Fabio D.
dc.contributor.authorMarrugo, Andrés G.
dc.date.accessioned2023-07-21T20:48:35Z
dc.date.available2023-07-21T20:48:35Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationPeña-Consuegra, J., Pagnola, M. R., Useche, J., Madhukar, P., Saccone, F. D., & Marrugo, A. G. (2023). Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors. JOM, 75(3), 631-645.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12381
dc.description.abstractThe development of techniques for synthesizing graphene and its derivatives, as well as currently available nanocomposite fabrication techniques, coupled with the diverse applications of strain and pressure sensors, has made this field of growing interest in the last decade. This article provides an overview of conventional strain sensor manufacturing techniques, such as in situ polymerization, solution blending, and electrospinning. It also covers various additive manufacturing techniques such as vat-photopolymerization, material extrusion, material jetting, sheet lamination, and the most common graphene synthesis techniques like chemical-based, vapor deposition, exfoliation, and mechanical-based methods. The review is also completed with a discussion about the sensing mechanisms of strain sensors, considering the various process parameters to characterize and compare the performance of a strain sensor. Finally, we examine several key aspects of the sensor’s component materials, the type of sensing mechanism, and the appropriate manufacturing process. © 2022, The Minerals, Metals & Materials Society.spa
dc.format.extent14 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJOMspa
dc.titleManufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensorsspa
dcterms.bibliographicCitationPark, J., You, I., Shin, S., Jeong, U. Material approaches to stretchable strain sensors (2015) ChemPhysChem, 16 (6), pp. 1155-1163. Cited 153 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1439-7641 doi: 10.1002/cphc.201402810spa
dcterms.bibliographicCitationKasar, A.K., Xiong, G., Menezes, P.L. Graphene-Reinforced Metal and Polymer Matrix Composites (2018) JOM, 70 (6), pp. 829-836. Cited 35 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-018-2823-2spa
dcterms.bibliographicCitationSeyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., Razal, J.M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications (2019) Materials Horizons, 6 (2), pp. 219-249. Cited 240 times. http://pubs.rsc.org/en/journals/journal/mh doi: 10.1039/c8mh01062espa
dcterms.bibliographicCitationSony, S., Laventure, S., Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring (2019) Structural Control and Health Monitoring, 26 (3), art. no. e2321. Cited 289 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1545-2263 doi: 10.1002/stc.2321spa
dcterms.bibliographicCitationSanchez, V., Walsh, C.J., Wood, R.J. Textile Technology for Soft Robotic and Autonomous Garments (2021) Advanced Functional Materials, 31 (6), art. no. 2008278. Cited 106 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1616-3028 doi: 10.1002/adfm.202008278spa
dcterms.bibliographicCitationLiu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., Dai, K., (...), Guo, Z. Electrically conductive polymer composites for smart flexible strain sensors: a critical review (2018) Journal of Materials Chemistry C, 6 (45), pp. 12121-12141. Cited 461 times. http://pubs.rsc.org/en/journals/journal/tc doi: 10.1039/C8TC04079Fspa
dcterms.bibliographicCitationXu, F., Li, X., Shi, Y., Li, L., Wang, W., He, L., Liu, R. Recent developments for flexible pressure sensors: A review (2018) Micromachines, 9 (11), art. no. 580. Cited 173 times. https://www.mdpi.com/2072-666X/9/11/580/pdf doi: 10.3390/mi9110580spa
dcterms.bibliographicCitationMehmood, A., Mubarak, N.M., Khalid, M., Walvekar, R., Abdullah, E.C., Siddiqui, M.T.H., Baloch, H.A., (...), Mazari, S. Graphene based nanomaterials for strain sensor application - A review (2020) Journal of Environmental Chemical Engineering, 8 (3), art. no. 103743. Cited 104 times. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2020.103743spa
dcterms.bibliographicCitationMohammed, M.K., Al-Nafiey, A., Al-Dahash, G. Manufacturing graphene and graphene-based nanocomposite for piezoelectric pressure sensor application: A review (2021) Nano Biomedicine and Engineering, 13 (1), pp. 27-35. Cited 5 times. http://nanobe.org/Assets/userfiles/sys_eb538c1c-65ff-4e82-8e6a-a1ef01127fed/files/13(1)_p027-035%20(Musaab%20Khudhur%20Mohammed).pdf doi: 10.5101/nbe.v13i1.p27-35spa
dcterms.bibliographicCitationNag, A., Mitra, A., Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review (2018) Sensors and Actuators, A: Physical, 270, pp. 177-194. Cited 415 times. doi: 10.1016/j.sna.2017.12.028spa
dcterms.bibliographicCitationAsyraf, M., Anwar, M., Sheng, L.M., Danquah, M.K. Recent Development of Nanomaterial-Doped Conductive Polymers (2017) JOM, 69 (12), pp. 2515-2523. Cited 15 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-017-2628-8spa
dcterms.bibliographicCitationZhu, Y., Cai, H., Ding, H., Pan, N., Wang, X. Fabrication of Low-Cost and Highly Sensitive Graphene-Based Pressure Sensors by Direct Laser Scribing Polydimethylsiloxane (Open Access) (2019) ACS Applied Materials and Interfaces. Cited 74 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.8b17085spa
dcterms.bibliographicCitationLiu, H., Gao, H., Hu, G. Highly sensitive natural rubber/pristine graphene strain sensor prepared by a simple method (2019) Composites Part B: Engineering, 171, pp. 138-145. Cited 56 times. https://www.journals.elsevier.com/composites-part-b-engineering doi: 10.1016/j.compositesb.2019.04.032spa
dcterms.bibliographicCitationPagnola, M.R., Morales, F., Tancredi, P., Socolovsky, L.M. Radial Distribution Function Analysis and Molecular Simulation of Graphene Nanoplatelets Obtained by Mechanical Ball Milling (2021) JOM, 73 (8), pp. 2471-2478. Cited 8 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-020-04499-5spa
dcterms.bibliographicCitationMontazerian, H., Rashidi, A., Dalili, A., Najjaran, H., Milani, A.S., Hoorfar, M. Graphene-Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications (2019) Small, 15 (17), art. no. 1804991. Cited 78 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1613-6829 doi: 10.1002/smll.201804991spa
dcterms.bibliographicCitationLi, Y., He, T., Shi, L., Wang, R., Sun, J. Strain Sensor with Both a Wide Sensing Range and High Sensitivity Based on Braided Graphene Belts (2020) ACS Applied Materials and Interfaces, 12 (15), pp. 17691-17698. Cited 58 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.9b21921spa
dcterms.bibliographicCitationKumar, V., Alam, M.N., Manikkavel, A., Song, M., Lee, D.-J., Park, S.-S. Silicone rubber composites reinforced by carbon nanofillers and their hybrids for various applications: A review (2021) Polymers, 13 (14), art. no. 2322. Cited 42 times. https://www.mdpi.com/2073-4360/13/14/2322/pdf doi: 10.3390/polym13142322spa
dcterms.bibliographicCitationZhao, L., Qiang, F., Dai, S.-W., Shen, S.-C., Huang, Y.-Z., Huang, N.-J., Zhang, G.-D., (...), Tang, L.-C. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors (2019) Nanoscale, 11 (21), pp. 10229-10238. Cited 98 times. http://pubs.rsc.org/en/journals/journal/nr doi: 10.1039/c9nr02672jspa
dcterms.bibliographicCitationZhao, L., Qiang, F., Dai, S.-W., Shen, S.-C., Huang, Y.-Z., Huang, N.-J., Zhang, G.-D., (...), Tang, L.-C. Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors (2019) Nanoscale, 11 (21), pp. 10229-10238. Cited 98 times. http://pubs.rsc.org/en/journals/journal/nr doi: 10.1039/c9nr02672jspa
dcterms.bibliographicCitationZhu, Y., Cai, H., Ding, H., Pan, N., Wang, X. Fabrication of Low-Cost and Highly Sensitive Graphene-Based Pressure Sensors by Direct Laser Scribing Polydimethylsiloxane (2019) ACS Applied Materials and Interfaces. Cited 74 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.8b17085spa
dcterms.bibliographicCitationNiu, D., Jiang, W., Ye, G., Wang, K., Yin, L., Shi, Y., Chen, B., (...), Liu, H. Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection (2018) Materials Research Bulletin, 102, pp. 92-99. Cited 70 times. http://www.sciencedirect.com/science/journal/00255408 doi: 10.1016/j.materresbull.2018.02.005spa
dcterms.bibliographicCitationLuo, S., Yang, J., Song, X., Zhou, X., Yu, L., Sun, T., Yu, C., (...), Wei, D. Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode (2018) Solid-State Electronics, 145, pp. 29-33. Cited 46 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/103/description#description doi: 10.1016/j.sse.2018.04.003spa
dcterms.bibliographicCitationWang, Z., Zhang, Q., Yue, Y., Xu, J., Xu, W., Sun, X., Chen, Y., (...), Liu, Y. 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity (2019) Nanotechnology, 30 (34), art. no. 345501. Cited 38 times. https://iopscience.iop.org/article/10.1088/1361-6528/ab1287/pdf doi: 10.1088/1361-6528/ab1287spa
dcterms.bibliographicCitationJeong, S.-Y., Ma, Y.-W., Lee, J.-U., Je, G.-J., Shin, B.-S. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser (2019) Sensors (Switzerland), 19 (22), art. no. 4867. Cited 32 times. https://www.mdpi.com/1424-8220/19/22/4867/pdf doi: 10.3390/s19224867spa
dcterms.bibliographicCitationChen, J., Zhu, Y., Jiang, W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer (Open Access) (2020) Composites Science and Technology, 186, art. no. 107938. Cited 138 times. http://www.journals.elsevier.com/composites-science-and-technology/ doi: 10.1016/j.compscitech.2019.107938spa
dcterms.bibliographicCitationKumpika, T., Kantarak, E., Sriboonruang, A., Sroila, W., Tippo, P., Thongpan, W., Pooseekheaw, P., (...), Singjai, P. Stretchable and compressible strain sensors for gait monitoring constructed using carbon nanotube/graphene composite (Open Access) (2020) Materials Research Express, 7 (3), art. no. 035006. Cited 7 times. https://iopscience.iop.org/article/10.1088/2053-1591/ab748d/pdf doi: 10.1088/2053-1591/ab748dspa
dcterms.bibliographicCitationO'Driscoll, D.P., McMahon, S., Garcia, J., Biccai, S., Gabbett, C., Kelly, A.G., Barwich, S., (...), Coleman, J.N. Printable G-Putty for Frequency- and Rate-Independent, High-Performance Strain Sensors (2021) Small, 17 (23), art. no. 2006542. Cited 13 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1613-6829 doi: 10.1002/smll.202006542spa
dcterms.bibliographicCitationMeng, Q., Liu, Z., Han, S., Xu, L., Araby, S., Cai, R., Zhao, Y., (...), Liu, T. A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film (2019) Journal of Materials Science, 54 (15), pp. 10856-10870. Cited 45 times. doi: 10.1007/s10853-019-03650-1spa
dcterms.bibliographicCitationLu, S., Tian, C., Wang, X., Chen, D., Ma, K., Leng, J., Zhang, L. Health monitoring for composite materials with high linear and sensitivity GnPs/epoxy flexible strain sensors (Open Access) (2017) Sensors and Actuators, A: Physical, 267, pp. 409-416. Cited 22 times. doi: 10.1016/j.sna.2017.10.047spa
dcterms.bibliographicCitationLi, R., Zhou, Q., Bi, Y., Cao, S., Xia, X., Yang, A., Li, S., (...), Xiao, X. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches (Open Access) (2021) Sensors and Actuators, A: Physical, 321, art. no. 112425. Cited 73 times. https://www.journals.elsevier.com/sensors-and-actuators-a-physical doi: 10.1016/j.sna.2020.112425spa
dcterms.bibliographicCitationHe, Z., Chen, W., Liang, B., Liu, C., Yang, L., Lu, D., Mo, Z., (...), Gui, X. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks (Open Access) (2018) ACS Applied Materials and Interfaces, 10 (15), pp. 12816-12823. Cited 200 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.8b01050spa
dcterms.bibliographicCitationAvilés, F., Oliva-Avilés, A.I., Cen-Puc, M. Piezoresistivity, Strain, and Damage Self-Sensing of Polymer Composites Filled with Carbon Nanostructures (Open Access) (2018) Advanced Engineering Materials, 20 (7), art. no. 1701159. Cited 107 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1527-2648 doi: 10.1002/adem.201701159spa
dcterms.bibliographicCitationBoland, C.S., Khan, U., Ryan, G., Barwich, S., Charifou, R., Harvey, A., Backes, C., (...), Coleman, J.N. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites (2016) Science, 354 (6317), pp. 1257-1260. Cited 613 times. http://science.sciencemag.org/content/sci/354/6317/1257.full.pdf doi: 10.1126/science.aag2879spa
dcterms.bibliographicCitationHébert, M., Huissoon, J.P., Ren, C.L. A silicone-based soft matrix nanocomposite strain-like sensor fabricated using Graphene and Silly Putty® (2020) Sensors and Actuators, A: Physical, 305, art. no. 111917. Cited 4 times. https://www.journals.elsevier.com/sensors-and-actuators-a-physical doi: 10.1016/j.sna.2020.111917spa
dcterms.bibliographicCitationPena-Consuegra, J., Jairo, U.V., Pagnola, M. Key Aspects in the design of silicone/graphene-based strain sensors for structural monitoring (2020) 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedings, art. no. 9290292. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9290170 ISBN: 978-172819496-7 doi: 10.1109/CIIMA50553.2020.9290292spa
dcterms.bibliographicCitationHe, J., Zhang, Y., Zhou, R., Meng, L., Pan, C., Mai, W., Chen, T. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects (2020) Journal of Materiomics, 6 (1), pp. 86-101. Cited 83 times. https://www.journals.elsevier.com/journal-of-materiomics/ doi: 10.1016/j.jmat.2020.01.009spa
dcterms.bibliographicCitationJin, X., Feng, C., Ponnamma, D., Yi, Z., Parameswaranpillai, J., Thomas, S., Salim, N.V. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics (2020) Chemical Engineering Journal Advances, 4, art. no. 100034. Cited 37 times. https://www.journals.elsevier.com/chemical-engineering-journal-advances doi: 10.1016/j.ceja.2020.100034spa
dcterms.bibliographicCitationSankar, V., Sankar, V., Nambi, A., Bhat, V.N., Sethy, D., Balasubramaniam, K., Das, S., (...), Sundara, R. Waterproof Flexible Polymer-Functionalized Graphene-Based Piezoresistive Strain Sensor for Structural Health Monitoring and Wearable Devices (2020) ACS Omega, 5 (22), pp. 12682-12691. Cited 27 times. pubs.acs.org/journal/acsodf doi: 10.1021/acsomega.9b04205spa
dcterms.bibliographicCitationWang, X., Li, J., Song, H., Huang, H., Gou, J. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity (Open Access) (2018) ACS Applied Materials and Interfaces, 10 (8), pp. 7371-7380. Cited 171 times. http://pubs.acs.org/journal/aamick doi: 10.1021/acsami.7b17766spa
dcterms.bibliographicCitationGao, Y., Fang, X., Tan, J., Lu, T., Pan, L., Xuan, F. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites (2018) Nanotechnology, 29 (23), art. no. 235501. Cited 66 times. http://iopscience.iop.org/article/10.1088/1361-6528/aab888/pdf doi: 10.1088/1361-6528/aab888spa
dcterms.bibliographicCitationWang, Y., Wang, Y., Yang, Y. Graphene–Polymer Nanocomposite-Based Redox-Induced Electricity for Flexible Self-Powered Strain Sensors (Open Access) (2018) Advanced Energy Materials, 8 (22), art. no. 1800961. Cited 88 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1614-6840 doi: 10.1002/aenm.201800961spa
dcterms.bibliographicCitationRiyajuddin, S., Kumar, S., Gaur, S.P., Sud, A., Maruyama, T., Ali, M.E., Ghosh, K. Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure (2020) Nanotechnology, 31 (29), art. no. 295501. Cited 28 times. https://iopscience.iop.org/article/10.1088/1361-6528/ab7b88 doi: 10.1088/1361-6528/ab7b88spa
dcterms.bibliographicCitationQiu, A., Jia, Q., Yu, H., Oh, J.-A., Li, D., Hsu, H.-Y., Kawashima, N., (...), Ma, J. Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements (2021) Materials Today Communications, 26, art. no. 102023. Cited 11 times. http://www.journals.elsevier.com/materials-today-communications/ doi: 10.1016/j.mtcomm.2021.102023spa
dcterms.bibliographicCitationRandviir, E.P., Brownson, D.A.C., Banks, C.E. A decade of graphene research: Production, applications and outlook (Open Access) (2014) Materials Today, 17 (9), pp. 426-432. Cited 442 times. http://www.journals.elsevier.com/materials-today/ doi: 10.1016/j.mattod.2014.06.001spa
dcterms.bibliographicCitationSong, Y., Luo, Y., Zhu, C., Li, H., Du, D., Lin, Y. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials (Open Access) (2016) Biosensors and Bioelectronics, 76, pp. 195-212. Cited 308 times. www.elsevier.com/locate/bios doi: 10.1016/j.bios.2015.07.002spa
dcterms.bibliographicCitationLim, J.Y., Mubarak, N.M., Abdullah, E.C., Nizamuddin, S., Khalid, M., Inamuddin Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review (2018) Journal of Industrial and Engineering Chemistry, 66, pp. 29-44. Cited 265 times. http:www.sciencedirect.com/science/journal/1226086X doi: 10.1016/j.jiec.2018.05.028spa
dcterms.bibliographicCitationNie, M., Xia, Y.-H., Yang, H.-S. A flexible and highly sensitive graphene-based strain sensor for structural health monitoring (2019) Cluster Computing, 22, pp. 8217-8224. Cited 38 times. https://link.springer.com/journal/volumesAndIssues/10586 doi: 10.1007/s10586-018-1727-9spa
dcterms.bibliographicCitationHernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., (...), Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite (2008) Nature Nanotechnology, 3 (9), pp. 563-568. Cited 5282 times. doi: 10.1038/nnano.2008.215spa
dcterms.bibliographicCitationShin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., (...), Lee, Y.H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance (Open Access) (2009) Advanced Functional Materials, 19 (12), pp. 1987-1992. Cited 2029 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/122335632/PDFSTART doi: 10.1002/adfm.200900167spa
dcterms.bibliographicCitationZhou, X., Zheng, J., Wu, H., Yang, H., Zhang, J., Guo, S. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene (Open Access) (2011) Journal of Physical Chemistry C, 115 (24), pp. 11957-11961. Cited 311 times. doi: 10.1021/jp202575jspa
dcterms.bibliographicCitationPham, V.H., Cuong, T.V., Nguyen-Phan, T.-D., Pham, H.D., Kim, E.J., Hur, S.H., Shin, E.W., (...), Chung, J.S. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents (2010) Chemical Communications, 46 (24), pp. 4375-4377. Cited 162 times. http://pubs.rsc.org/en/journals/journal/cc doi: 10.1039/c0cc00363hspa
dcterms.bibliographicCitationZhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S. Reduction of graphene oxide vial-ascorbic acid (Open Access) (2010) Chemical Communications, 46 (7), pp. 1112-1114. Cited 2066 times. http://pubs.rsc.org/en/journals/journal/cc doi: 10.1039/b917705aspa
dcterms.bibliographicCitationZhu, C., Guo, S., Fang, Y., Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets (2010) ACS Nano, 4 (4), pp. 2429-2437. Cited 1292 times. doi: 10.1021/nn1002387spa
dcterms.bibliographicCitationFan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation (Open Access) (2008) Advanced Materials, 20 (23), pp. 4490-4493. Cited 1614 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/121429860/PDFSTART doi: 10.1002/adma.200801306spa
dcterms.bibliographicCitationGuoxiu, W., Juan, Y., Jinsoo, P., Xinglong, G., Bei, W., Hao, L., Jane, Y. Facile synthesis and characterization of graphene nanosheets (2008) Journal of Physical Chemistry C, 112 (22), pp. 8192-8195. Cited 1797 times. doi: 10.1021/jp710931hspa
dcterms.bibliographicCitationAmarnath, C.A., Hong, C.E., Kim, N.H., Ku, B.-C., Kuila, T., Lee, J.H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent (2011) Carbon, 49 (11), pp. 3497-3502. Cited 196 times. doi: 10.1016/j.carbon.2011.04.048spa
dcterms.bibliographicCitationCompton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., Nguyen, S.T. Chemically active reduced graphene oxide with tunable C/O ratios (2011) ACS Nano, 5 (6), pp. 4380-4391. Cited 320 times. doi: 10.1021/nn1030725spa
dcterms.bibliographicCitationHansora, D.P., Shimpi, N.G., Mishra, S. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications (2015) JOM, 67 (12), pp. 2855-2868. Cited 72 times. http://www.springer.com/materials/journal/11837 doi: 10.1007/s11837-015-1522-5spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1007/s11837-022-05550-3
dc.subject.keywordsStrain Sensor;spa
dc.subject.keywordsFlexible Electronics;spa
dc.subject.keywordsSensorspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.