Mostrar el registro sencillo del ítem

dc.contributor.authorRamos-Paja, Carlos Andres
dc.contributor.authorDanilo-Montoya, Oscar
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.date.accessioned2023-07-21T20:47:03Z
dc.date.available2023-07-21T20:47:03Z
dc.date.issued2022-09-15
dc.date.submitted2023-07
dc.identifier.citationRamos-Paja, C.A.; Danilo-Montoya, O.; Grisales-Noreña, L.F. Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller. Electronics 2022, 11, 2923. https://doi.org/10.3390/electronics11182923spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12372
dc.description.abstractThis paper presents a photovoltaic (PV) system designed to reduce the DC-link capacitance present in double-stage PV microinverters without increasing the capacitor interfacing the PV source. This solution is based on a modified boost topology, which exhibits continuous current in both input and output ports. Such a characteristic enables the implementation of PV microinverters without electrolytic capacitors, which improves the reliability in comparison with solutions based on classical converters with discontinuous output current and electrolytic capacitors. However, the modified boost converter exhibits different dynamic behavior in comparison with the classical boost converter; thus, design processes and controllers developed for the classical boost converter are not applicable. This paper also introduces a sliding-mode controller designed to ensure the stable operation of the PV microinverter around the maximum power point. Moreover, this solution also rejects the voltage oscillations at double the grid frequency generated by the grid-connection. The global stability of the complete PV system is formally demonstrated using mathematical analyses, and a step-by-step design process for both the power stage and control system is proposed. Finally, the design process is illustrated using a representative application example, and the correct operation of the PV system is validated using realistic circuital simulations. The results validate the accuracy of the theoretical equations proposed for both the design and control of the novel PV system, where errors below 4.5% were obtained for the ripple prediction, and below 1% for the prediction of the dynamic behavior.spa
dc.format.extent32 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics (Switzerland) - Vol. 11 No. 18 (2022)spa
dc.titlePhotovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controllerspa
dcterms.bibliographicCitationKrechowicz, M., Krechowicz, A., Lichołai, L., Pawelec, A., Piotrowski, J.Z., Stępień, A. Reduction of the Risk of Inaccurate Prediction of Electricity Generation from PV Farms Using Machine Learning (2022) Energies, 15 (11), art. no. 4006. Cited 5 times. https://www.mdpi.com/1996-1073/15/11/4006/pdf?version=1654160719 doi: 10.3390/en15114006spa
dcterms.bibliographicCitationShams, I., Mekhilef, S., Tey, K.S. Advancement of voltage equalizer topologies for serially connected solar modules as partial shading mitigation technique: A comprehensive review (2021) Journal of Cleaner Production, 285, art. no. 124824. Cited 15 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.124824spa
dcterms.bibliographicCitationBen-Yaakov, S., Blumenfeld, A., Cervera, A., Evzelman, M. Design and evaluation of a modular resonant switched capacitors equalizer for PV panels (2012) 2012 IEEE Energy Conversion Congress and Exposition, ECCE 2012, art. no. 6342262, pp. 4129-4136. Cited 56 times. ISBN: 978-146730801-4 doi: 10.1109/ECCE.2012.6342262spa
dcterms.bibliographicCitationEguchi, K., Oota, I., Terada, S., Zhu, H. Synthesis and analysis of a switched-capacitor-based battery equalizer using: Level-shift circuits (2012) International Journal of Intelligent Engineering and Systems, 5 (4), pp. 1-9. Cited 5 times. http://www.inass.org/share/2012123101.pdf doi: 10.22266/ijies2012.1231.01spa
dcterms.bibliographicCitationBallo, A., Grasso, A.D., Palumbo, G. Current-mode body-biased switch to increase performance of linear charge pumps (2020) International Journal of Circuit Theory and Applications, 48 (11), pp. 1864-1872. Cited 14 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-007X doi: 10.1002/cta.2851spa
dcterms.bibliographicCitationBallo, A., Grasso, A.D., Palumbo, G. A review of charge pump topologies for the power management of IoT nodes (2019) Electronics (Switzerland), 8 (5), art. no. 480. Cited 70 times. https://www.mdpi.com/2079-9292/8/5/480/pdf doi: 10.3390/electronics8050480spa
dcterms.bibliographicCitationBallo, A., Grasso, A.D., Giustolisi, G., Palumbo, G. Optimized Charge Pump with Clock Booster for Reduced Rise Time or Silicon Area (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (12), art. no. 8640088, pp. 1977-1981. Cited 27 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2898716spa
dcterms.bibliographicCitationFang, Y., Zhu, Y., Fei, J. Adaptive intelligent sliding mode control of a photovoltaic grid-connected inverter (2018) Applied Sciences (Switzerland), 8 (10), art. no. 1756. Cited 12 times. https://www.mdpi.com/2076-3417/8/10/1756/pdf doi: 10.3390/app8101756spa
dcterms.bibliographicCitationRamos-Paja, C.A., Bastidas-Rodriguez, J.D., Saavedra-Montes, A.J. Sliding-Mode Control of a Photovoltaic System Based on a Flyback Converter for Microinverter Applications (2022) Applied Sciences (Switzerland), 12 (3), art. no. 1399. Cited 4 times. https://www.mdpi.com/2076-3417/12/3/1399/pdf doi: 10.3390/app12031399spa
dcterms.bibliographicCitationAl-Wesabi, I., Fang, Z., Wei, Z., Dong, H. Direct sliding mode control for dynamic instabilities in dc-link voltage of standalone photovoltaic systems with a small capacitor (2022) Electronics (Switzerland), 11 (1), art. no. 133. Cited 10 times. https://www.mdpi.com/2079-9292/11/1/133/pdf doi: 10.3390/electronics11010133spa
dcterms.bibliographicCitationKihal, A., Krim, F., Talbi, B., Laib, A., Sahli, A. A robust control of two-stage grid-tied PV systems employing integral sliding mode theory (Open Access) (2018) Energies, 11 (10), art. no. 2791. Cited 24 times. https://www.mdpi.com/1996-1073/11/10/2791/pdf doi: 10.3390/en11102791spa
dcterms.bibliographicCitationZeb, K., Islam, S.U., Din, W.U., Khan, I., Ishfaq, M., Busarello, T.D.C., Ahmad, I., (...), Kim, H.J. Design of fuzzy-PI and fuzzy-sliding mode controllers for single-phase two-stages grid- connected transformerless photovoltaic inverter (Open Access) (2019) Electronics (Switzerland), 8 (5), art. no. 520. Cited 48 times. https://www.mdpi.com/2079-9292/8/5/520/pdf doi: 10.3390/electronics8050520spa
dcterms.bibliographicCitationKabalci, E., Kabalci, Y., Guerrero, J.M. Design and implementation of a dual-input single-output photovoltaic converter (2020) Energies, 13 (14), art. no. 3679. https://www.mdpi.com/1996-1073/13/14/3679 doi: 10.3390/en13143679spa
dcterms.bibliographicCitationAhmed, M., Harbi, I., Kennel, R., Abdelrahem, M. Predictive fixed switching maximum power point tracking algorithm with dual adaptive step-size for pv systems (2021) Electronics (Switzerland), 10 (24), art. no. 3109. Cited 6 times. https://www.mdpi.com/2079-9292/10/24/3109/pdf doi: 10.3390/electronics10243109spa
dcterms.bibliographicCitationCharaabi, A., Barambones, O., Zaidi, A., Zanzouri, N. A novel two stage controller for a dc-dc boost converter to harvest maximum energy from the PV power generation (2020) Actuators, 9 (2), art. no. 29. Cited 5 times. https://www.mdpi.com/2076-0825/9/2/29 doi: 10.3390/ACT9020029spa
dcterms.bibliographicCitationBani Salim, M., Hayajneh, H.S., Mohammed, A., Ozcelik, S. Robust direct adaptive controller design for photovoltaic maximum power point tracking application (Open Access) (2019) Energies, 12 (16), art. no. en12163182. Cited 8 times. https://www.mdpi.com/1996-1073/12/16 doi: 10.3390/en12163182spa
dcterms.bibliographicCitationGil, G.M.V., Rodrigues, L.L., Inomoto, R.S., Sguarezi, A.J., Monaro, R.M. Weighted-PSO applied to tune sliding mode plus PI controller applied to a boost converter in a PV system (2019) Energies, 12 (5), art. no. 864. Cited 9 times. https://www.mdpi.com/1996-1073/12/5 doi: 10.3390/en12050864spa
dcterms.bibliographicCitationRamos-Paja, C.A., Montoya, D.G., Bastidas-Rodriguez, J.D. Sliding-mode control of distributed maximum power point tracking converters featuring overvoltage protection (2018) Energies, 11 (9), art. no. en11092220. Cited 9 times. https://www.mdpi.com/1996-1073/11/9/2220/pdf doi: 10.3390/en11092220spa
dcterms.bibliographicCitationZhang, G., Chen, W., Yu, S.S., Zhang, Y. Non-electrolytic-capacitor boost converter with non-pulsating ripple-free output current (2021) International Journal of Circuit Theory and Applications, 49 (9), pp. 2719-2735. Cited 2 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-007X doi: 10.1002/cta.3033spa
dcterms.bibliographicCitation(2021) Available online https://powersimtech.com/products/psim/capabilities-applications/spa
dcterms.bibliographicCitationEl Aroudi, A., Haroun, R., Al-Numay, M., Huang, M. Multiple-loop control design for a single-stage PV-fed grid-tied differential boost inverter (Open Access) (2020) Applied Sciences (Switzerland), 10 (14), art. no. 4808. Cited 9 times. https://res.mdpi.com/d_attachment/applsci/applsci-10-04808/article_deploy/applsci-10-04808-v2.pdf doi: 10.3390/app10144808spa
dcterms.bibliographicCitationErickson, R.W., Maksimovic, D. (2001) Fundamentals of Power Electronics. Cited 8026 times. 2nd ed., Springer, Berlin/Heidelberg, Germanyspa
dcterms.bibliographicCitationBabaei, E., Seyed Mahmoodieh, M.E. Systematical method of designing the elements of the Cuk converter (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 55, pp. 351-361. Cited 23 times. doi: 10.1016/j.ijepes.2013.09.024spa
dcterms.bibliographicCitationCoelho, R.F., Dos Santos, W.M., Martins, D.C. Influence of power converters on PV maximum power point tracking efficiency (Open Access) (2012) 2012 10th IEEE/IAS International Conference on Industry Applications, INDUSCON 2012, art. no. 6453083. Cited 45 times. ISBN: 978-146732412-0 doi: 10.1109/INDUSCON.2012.6453083spa
dcterms.bibliographicCitationMontoya, D.G., Ramos-Paja, C.A., Giral, R. Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques (2016) IEEE Transactions on Power Electronics, 31 (1), art. no. 7024938, pp. 235-247. Cited 116 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2015.2397831spa
dcterms.bibliographicCitationArt Kay, T.C. TI Designs: Comparator with Hysteresis Reference Design, 2014spa
dcterms.bibliographicCitationFemia, N., Petrone, G., Spagnuolo, G., Vitelli, M. Optimization of perturb and observe maximum power point tracking method (Open Access) (2005) IEEE Transactions on Power Electronics, 20 (4), pp. 963-973. Cited 2480 times. doi: 10.1109/TPEL.2005.850975spa
dcterms.bibliographicCitationFemia, N., Petrone, G., Spagnuolo, G., Vitelli, M. A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems (Open Access) (2009) IEEE Transactions on Industrial Electronics, 56 (11), pp. 4473-4482. Cited 395 times. doi: 10.1109/TIE.2009.2029589spa
dcterms.bibliographicCitation(2021) TMS320F28335. Cited 2 times. Available online https://www.ti.com/product/TMS320F28335spa
dcterms.bibliographicCitation(2022) AD533 Low Cost IC Multiplier, Divider, Squarer, Square Rooter. Cited 2 times. Available online https://www.analog.com/en/products/ad533.html#product-overviewspa
dcterms.bibliographicCitationRC4200 Analog Multiplier, 2001 Available online https://www.javanelec.com/CustomAjax/GetAppDocument/80c6759d-554f-4720-8a24-7440b9d4f9afspa
dcterms.bibliographicCitation(2002) HA-2557 130 MHz, Four Quadrant, Current Output Analog Multiplier. Cited 2 times. Available online https://manualmachine.com/intersil/ha2557883/3885982-datasheet/spa
dcterms.bibliographicCitationDatasheet BP 585, 2003 Available online http://www.posharp.com/Businesses/daacacf6-2fa0-4fe2-b6f5-30211a36989a/Panel/BP585F.pdfspa
dcterms.bibliographicCitationFemia, N., Petrone, G., Spagnuolo, G., Vitelli, M. Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems (Open Access) (2012) Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, pp. 1-336. Cited 175 times. https://www.taylorfrancis.com/books/9781466506916 ISBN: 978-146650691-6; 978-131521653-9 doi: 10.1201/b14303spa
dcterms.bibliographicCitationPetrone, G., Ramos-Paja, C.A., Spagnuolo, G. (2017) Photovoltaic Sources Modeling. Cited 104 times. John Wiley & Sons, Ltd., Chichester, UKspa
dcterms.bibliographicCitation(2019) Slew Rate Limiter Circuit (SBOA218A) Available online https://www.ti.com/lit/an/sboa218a/sboa218a.pdfspa
dcterms.bibliographicCitationAngadi, S., Yaragatti, U.R., Suresh, Y., Raju, A.B. System parameter based performance optimization of solar PV systems with perturbation based MPPT algorithms (2021) Energies, 14 (7), art. no. 2007. Cited 8 times. https://www.mdpi.com/1996-1073/14/7/2007/pdf doi: 10.3390/en14072007spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/electronics11182923
dc.subject.keywordsBoost converterspa
dc.subject.keywordsNon-electrolytic capacitorspa
dc.subject.keywordsPV microinverterspa
dc.subject.keywordsSliding-mode controllerspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.