Mostrar el registro sencillo del ítem
Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
dc.contributor.author | Sierra-Porta, D. | |
dc.contributor.author | Domínguez-Monterroza, Andy-Rafael | |
dc.date.accessioned | 2023-07-21T20:46:47Z | |
dc.date.available | 2023-07-21T20:46:47Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Sierra-Porta, D., & Domínguez-Monterroza, A. R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 607, 128159. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12370 | |
dc.description.abstract | We use multifractal detrented fluctuation analysis (MFDFA) to investigate the relationship between magnetic rigidity or ”cutoff rigidity” and the variability and multifractal behavior in the time series of the cosmic ray flux on Earth, which is detected by neutron monitors on the Earth's surface. Because the cutoff rigidity depends strongly on the geographical latitude of the detectors, not all detectors produce equal cosmic ray counts. Our results indicate that there is some bias in the chaotic nature of the cosmic ray series associated with the latitude of the monitoring stations. We obtain an important relationship between the cutoff rigidity (R) for different behaviors and the Hurst exponent of the series corresponding to the counts at the neutron monitor stations. In particular, an inverse relationship is observed with higher rigidity corresponding to a lower Hurst exponent (H(q=a)=maR+Ba). In particular, for q=−10, considering all time series, the correlation coefficient is approximately 0.80, whereas the R-squared is 0.638, and the coefficients of the linear regression for this case are m=−0.0425±0.006 and b=0.8703±0.025. © 2022 Elsevier B.V. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Physica A: Statistical Mechanics and its Applications | spa |
dc.title | Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis | spa |
dcterms.bibliographicCitation | Van Allen, J.A. On the modulation of galactic cosmic ray intensity during solar activity cycles 19,20,21, 22 and early 23 (2000) Geophysical Research Letters, 27 (16), pp. 2453-2456. Cited 51 times. doi: 10.1029/2000GL003792 | spa |
dcterms.bibliographicCitation | Tomassetti, N., Orcinha, M., Barão, F., Bertucci, B. Evidence for a time lag in solar modulation of galactic cosmic rays (2017) Astrophysical Journal Letters, 849 (2), art. no. L32. Cited 54 times. www.iop.org/EJ/journal/apjl doi: 10.3847/2041-8213/aa9373 | spa |
dcterms.bibliographicCitation | Singh, M., Singh, Y.P., Badruddin Solar modulation of galactic cosmic rays during the last five solar cycles (2008) Journal of Atmospheric and Solar-Terrestrial Physics, 70 (1), pp. 169-183. Cited 25 times. doi: 10.1016/j.jastp.2007.10.001 | spa |
dcterms.bibliographicCitation | Iskra, K., Siluszyk, M., Alania, M., Wozniak, W. Experimental Investigation of the Delay Time in Galactic Cosmic Ray Flux in Different Epochs of Solar Magnetic Cycles: 1959 – 2014 (Open Access) (2019) Solar Physics, 294 (9), art. no. 115. Cited 15 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-019-1509-4 | spa |
dcterms.bibliographicCitation | Lockwood, J.A. Forbush decreases in the cosmic radiation (Open Access) (1971) Space Science Reviews, 12 (5), pp. 658-715. Cited 235 times. doi: 10.1007/BF00173346 | spa |
dcterms.bibliographicCitation | Belov, A.V., Eroshenko, E.A., Oleneva, V.A., Struminsky, A.B., Yanke, V.G. What determines the magnetude of forbush decreases? (2001) Advances in Space Research, 27 (3), pp. 625-630. Cited 90 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/S0273-1177(01)00095-3 | spa |
dcterms.bibliographicCitation | Wawrzynczak, A., Alania, M.V. Modeling and data analysis of a Forbush decrease (2010) Advances in Space Research, 45 (5), pp. 622-631. Cited 56 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/j.asr.2009.09.005 | spa |
dcterms.bibliographicCitation | Bourdarie, S., Xapsos, M. The near-Earth space radiation environment (2008) IEEE Transactions on Nuclear Science, 55 (4), art. no. 4636949, pp. 1810-1832. Cited 135 times. doi: 10.1109/TNS.2008.2001409 | spa |
dcterms.bibliographicCitation | Badhwar, G.D. The radiation environment in low-Earth orbit (1997) Radiation Research, 148 (5 SUPPL.), pp. S3-S10. Cited 120 times. doi: 10.2307/3579710 | spa |
dcterms.bibliographicCitation | Cucinotta, F.A., Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings (2006) Lancet Oncology, 7 (5), pp. 431-435. Cited 520 times. http://www.journals.elsevier.com/the-lancet-oncology/ doi: 10.1016/S1470-2045(06)70695-7 | spa |
dcterms.bibliographicCitation | Durante, M., Cucinotta, F.A. Heavy ion carcinogenesis and human space exploration (Open Access) (2008) Nature Reviews Cancer, 8 (6), pp. 465-472. Cited 434 times. doi: 10.1038/nrc2391 | spa |
dcterms.bibliographicCitation | Durante, M., Loeffler, J.S. Charged particles in radiation oncology (Open Access) (2010) Nature Reviews Clinical Oncology, 7 (1), pp. 37-43. Cited 520 times. doi: 10.1038/nrclinonc.2009.183 | spa |
dcterms.bibliographicCitation | Tsyganenko, N.A. A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations (Open Access) (2002) Journal of Geophysical Research: Space Physics, 107 (A8). Cited 371 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402 doi: 10.1029/2001JA000220 | spa |
dcterms.bibliographicCitation | Ostapenko, A.A., Maltsev, Y.P. Relation of the magnetic field in the magnetosphere to the geomagnetic and solar wind activity (1997) Journal of Geophysical Research: Space Physics, 102 (A8), art. no. 97JA00937, pp. 17467-17473. Cited 32 times. http://agupubs.onlinelibrary.wiley.com/hub/jgr/journal/10.1002/(ISSN)2169-9402/ doi: 10.1029/97JA00937 | spa |
dcterms.bibliographicCitation | Cooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N., Rasmussen, I.L., Byrnak, B., (...), Petrou, N. On cosmic-ray cut-off terminology (1991) Il Nuovo Cimento C, 14 (3), pp. 213-234. Cited 161 times. doi: 10.1007/BF02509357 | spa |
dcterms.bibliographicCitation | Chowdhury, P., Kudela, K. Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017 (2018) Astrophysics and Space Science, 363 (12), art. no. 250. Cited 24 times. http://www.kluweronline.com/issn/0004-640X doi: 10.1007/s10509-018-3467-y | spa |
dcterms.bibliographicCitation | López-Comazzi, A., Blanco, J.J. Short-Term Periodicities Observed in Neutron Monitor Counting Rates (Open Access) (2020) Solar Physics, 295 (6), art. no. 81. Cited 10 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-020-01649-5 | spa |
dcterms.bibliographicCitation | Mavromichalaki, H., Preka-Papadema, P., Petropoulos, B., Tsagouri, I., Georgakopoulos, S., Polygiannakis, J. Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953-1996 (Open Access) (2003) Annales Geophysicae, 21 (8), pp. 1681-1689. Cited 40 times. http://www.ann-geophys.net/volumes_and_issues.html doi: 10.5194/angeo-21-1681-2003 | spa |
dcterms.bibliographicCitation | Domingues, M.O., Mendes Jr., O., Da Costa, A.M. On wavelet techniques in atmospheric sciences (2005) Advances in Space Research, 35 (5), pp. 831-842. Cited 107 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/j.asr.2005.02.097 | spa |
dcterms.bibliographicCitation | Christodoulakis, J., Varotsos, C.A., Mavromichalaki, H., Efstathiou, M.N., Gerontidou, M. On the link between atmospheric cloud parameters and cosmic rays (Open Access) (2019) Journal of Atmospheric and Solar-Terrestrial Physics, 189, pp. 98-106. Cited 6 times. http://www.journals.elsevier.com/journal-of-atmospheric-and-solar-terrestrial-physics/ doi: 10.1016/j.jastp.2019.04.012 | spa |
dcterms.bibliographicCitation | Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series (2002) Physica A: Statistical Mechanics and its Applications, 316 (1-4), pp. 87-114. Cited 2752 times. doi: 10.1016/S0378-4371(02)01383-3 | spa |
dcterms.bibliographicCitation | Movahed, M.S., Jafari, G.R., Ghasemi, F., Rahvar, S., Tabar, M.R.R. Multifractal detrended fluctuation analysis of sunspot time series (2006) Journal of Statistical Mechanics: Theory and Experiment, (2), art. no. P02003. Cited 268 times. doi: 10.1088/1742-5468/2006/02/P02003 | spa |
dcterms.bibliographicCitation | Wang, Y., Liu, L., Gu, R. Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis (2009) International Review of Financial Analysis, 18 (5), pp. 271-276. Cited 182 times. doi: 10.1016/j.irfa.2009.09.005 | spa |
dcterms.bibliographicCitation | Rizvi, S.A.R., Dewandaru, G., Bacha, O.I., Masih, M. An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA (2014) Physica A: Statistical Mechanics and its Applications, 407, pp. 86-99. Cited 114 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2014.03.091 | spa |
dcterms.bibliographicCitation | Zhang, W., Wang, P., Li, X., Shen, D. The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average (2018) Physica A: Statistical Mechanics and its Applications, 510, pp. 658-670. Cited 94 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2018.07.032 | spa |
dcterms.bibliographicCitation | Wang, Y., Wu, C., Pan, Z. Multifractal detrending moving average analysis on the US Dollar exchange rates (Open Access) (2011) Physica A: Statistical Mechanics and its Applications, 390 (20), pp. 3512-3523. Cited 86 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.05.023 | spa |
dcterms.bibliographicCitation | Jiang, Z.-Q., Xie, W.-J., Zhou, W.-X., Sornette, D. Multifractal analysis of financial markets: A review (Open Access) (2019) Reports on Progress in Physics, 82 (12), art. no. 125901. Cited 155 times. https://iopscience.iop.org/article/10.1088/1361-6633/ab42fb/pdf doi: 10.1088/1361-6633/ab42fb | spa |
dcterms.bibliographicCitation | Shang, P., Lu, Y., Kamae, S. Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis (2008) Chaos, Solitons and Fractals, 36 (1), pp. 82-90. Cited 151 times. https://www.journals.elsevier.com/chaos-solitons-and-fractals doi: 10.1016/j.chaos.2006.06.019 | spa |
dcterms.bibliographicCitation | Zhao, X., Shang, P., Lin, A., Chen, G. Multifractal Fourier detrended cross-correlation analysis of traffic signals (2011) Physica A: Statistical Mechanics and its Applications, 390 (21-22), pp. 3670-3678. Cited 92 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.06.018 | spa |
dcterms.bibliographicCitation | Zhang, X., Liu, H., Zhao, Y., Zhang, X. Multifractal detrended fluctuation analysis on air traffic flow time series: A single airport case (2019) Physica A: Statistical Mechanics and its Applications, 531, art. no. 121790. Cited 23 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2019.121790 | spa |
dcterms.bibliographicCitation | Wang, F., Liao, G.-P., Li, J.-H., Li, X.-C., Zhou, T.-J. Multifractal detrended fluctuation analysis for clustering structures of electricity price periods (Open Access) (2013) Physica A: Statistical Mechanics and its Applications, 392 (22), pp. 5723-5734. Cited 50 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2013.07.039 | spa |
dcterms.bibliographicCitation | Yuan, X., Ji, B., Yuan, Y., Huang, Y., Li, X., Li, W. Multifractal detrended fluctuation analysis of electric load series (2015) Fractals, 23 (2), art. no. 1550010. Cited 11 times. http://www.worldscientific.com doi: 10.1142/S0218348X15500103 | spa |
dcterms.bibliographicCitation | Kurnaz, M.L. Detrended fluctuation analysis as a statistical tool to monitor the climate (Open Access) (2004) Journal of Statistical Mechanics: Theory and Experiment, (7), art. no. P07009. Cited 18 times. http://iopscience.iop.org/1742-5468/2004/07/P07009/pdf/1742-5468_2004_07_P07009.pdf doi: 10.1088/1742-5468/2004/07/P07009 | spa |
dcterms.bibliographicCitation | Wang, F., Liao, D.-W., Li, J.-W., Liao, G.-P. Two-dimensional multifractal detrended fluctuation analysis for plant identification (Open Access) (2015) Plant Methods, 11 (1), art. no. 12. Cited 34 times. http://www.plantmethods.com/ doi: 10.1186/s13007-015-0049-7 | spa |
dcterms.bibliographicCitation | Oswiecimka, P., Drod, S., Kwapie, J., Górski, A.Z. Effect of detrending on multifractal characteristics (Open Access) (2013) Acta Physica Polonica A, 123 (3), pp. 597-603. Cited 51 times. http://przyrbwn.icm.edu.pl/APP/PDF/123/a123z3p18.pdf doi: 10.12693/APhysPolA.123.597 | spa |
dcterms.bibliographicCitation | Koldobskiy, S.A., Kähkönen, R., Hofer, B., Krivova, N.A., Kovaltsov, G.A., Usoskin, I.G. Time Lag Between Cosmic-Ray and Solar Variability: Sunspot Numbers and Open Solar Magnetic Flux (Open Access) (2022) Solar Physics, 297 (3), art. no. 38. Cited 12 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-022-01970-1 | spa |
dcterms.bibliographicCitation | Drozdz, S., Os̈więcimka, P. Detecting and interpreting distortions in hierarchical organization of complex time series (Open Access) (2015) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91 (3), art. no. 030902. Cited 102 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevE.91.030902/apsxml doi: 10.1103/PhysRevE.91.030902 | spa |
dcterms.bibliographicCitation | Sierra Porta, D. Dataset: MultiFractal detrented fluctuations analysis on cosmic rays time series (2022) Mendeley Data, V2 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1016/j.physa.2022.128159 | |
dc.subject.keywords | Detrended Fluctuation Analyse (DFA); | spa |
dc.subject.keywords | Cross-Correlation; | spa |
dc.subject.keywords | Hurst Exponent | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.