Mostrar el registro sencillo del ítem

dc.contributor.authorSierra-Porta, D.
dc.contributor.authorDomínguez-Monterroza, Andy-Rafael
dc.date.accessioned2023-07-21T20:46:47Z
dc.date.available2023-07-21T20:46:47Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationSierra-Porta, D., & Domínguez-Monterroza, A. R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 607, 128159.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12370
dc.description.abstractWe use multifractal detrented fluctuation analysis (MFDFA) to investigate the relationship between magnetic rigidity or ”cutoff rigidity” and the variability and multifractal behavior in the time series of the cosmic ray flux on Earth, which is detected by neutron monitors on the Earth's surface. Because the cutoff rigidity depends strongly on the geographical latitude of the detectors, not all detectors produce equal cosmic ray counts. Our results indicate that there is some bias in the chaotic nature of the cosmic ray series associated with the latitude of the monitoring stations. We obtain an important relationship between the cutoff rigidity (R) for different behaviors and the Hurst exponent of the series corresponding to the counts at the neutron monitor stations. In particular, an inverse relationship is observed with higher rigidity corresponding to a lower Hurst exponent (H(q=a)=maR+Ba). In particular, for q=−10, considering all time series, the correlation coefficient is approximately 0.80, whereas the R-squared is 0.638, and the coefficients of the linear regression for this case are m=−0.0425±0.006 and b=0.8703±0.025. © 2022 Elsevier B.V.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePhysica A: Statistical Mechanics and its Applicationsspa
dc.titleLinking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysisspa
dcterms.bibliographicCitationVan Allen, J.A. On the modulation of galactic cosmic ray intensity during solar activity cycles 19,20,21, 22 and early 23 (2000) Geophysical Research Letters, 27 (16), pp. 2453-2456. Cited 51 times. doi: 10.1029/2000GL003792spa
dcterms.bibliographicCitationTomassetti, N., Orcinha, M., Barão, F., Bertucci, B. Evidence for a time lag in solar modulation of galactic cosmic rays (2017) Astrophysical Journal Letters, 849 (2), art. no. L32. Cited 54 times. www.iop.org/EJ/journal/apjl doi: 10.3847/2041-8213/aa9373spa
dcterms.bibliographicCitationSingh, M., Singh, Y.P., Badruddin Solar modulation of galactic cosmic rays during the last five solar cycles (2008) Journal of Atmospheric and Solar-Terrestrial Physics, 70 (1), pp. 169-183. Cited 25 times. doi: 10.1016/j.jastp.2007.10.001spa
dcterms.bibliographicCitationIskra, K., Siluszyk, M., Alania, M., Wozniak, W. Experimental Investigation of the Delay Time in Galactic Cosmic Ray Flux in Different Epochs of Solar Magnetic Cycles: 1959 – 2014 (Open Access) (2019) Solar Physics, 294 (9), art. no. 115. Cited 15 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-019-1509-4spa
dcterms.bibliographicCitationLockwood, J.A. Forbush decreases in the cosmic radiation (Open Access) (1971) Space Science Reviews, 12 (5), pp. 658-715. Cited 235 times. doi: 10.1007/BF00173346spa
dcterms.bibliographicCitationBelov, A.V., Eroshenko, E.A., Oleneva, V.A., Struminsky, A.B., Yanke, V.G. What determines the magnetude of forbush decreases? (2001) Advances in Space Research, 27 (3), pp. 625-630. Cited 90 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/S0273-1177(01)00095-3spa
dcterms.bibliographicCitationWawrzynczak, A., Alania, M.V. Modeling and data analysis of a Forbush decrease (2010) Advances in Space Research, 45 (5), pp. 622-631. Cited 56 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/j.asr.2009.09.005spa
dcterms.bibliographicCitationBourdarie, S., Xapsos, M. The near-Earth space radiation environment (2008) IEEE Transactions on Nuclear Science, 55 (4), art. no. 4636949, pp. 1810-1832. Cited 135 times. doi: 10.1109/TNS.2008.2001409spa
dcterms.bibliographicCitationBadhwar, G.D. The radiation environment in low-Earth orbit (1997) Radiation Research, 148 (5 SUPPL.), pp. S3-S10. Cited 120 times. doi: 10.2307/3579710spa
dcterms.bibliographicCitationCucinotta, F.A., Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings (2006) Lancet Oncology, 7 (5), pp. 431-435. Cited 520 times. http://www.journals.elsevier.com/the-lancet-oncology/ doi: 10.1016/S1470-2045(06)70695-7spa
dcterms.bibliographicCitationDurante, M., Cucinotta, F.A. Heavy ion carcinogenesis and human space exploration (Open Access) (2008) Nature Reviews Cancer, 8 (6), pp. 465-472. Cited 434 times. doi: 10.1038/nrc2391spa
dcterms.bibliographicCitationDurante, M., Loeffler, J.S. Charged particles in radiation oncology (Open Access) (2010) Nature Reviews Clinical Oncology, 7 (1), pp. 37-43. Cited 520 times. doi: 10.1038/nrclinonc.2009.183spa
dcterms.bibliographicCitationTsyganenko, N.A. A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations (Open Access) (2002) Journal of Geophysical Research: Space Physics, 107 (A8). Cited 371 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402 doi: 10.1029/2001JA000220spa
dcterms.bibliographicCitationOstapenko, A.A., Maltsev, Y.P. Relation of the magnetic field in the magnetosphere to the geomagnetic and solar wind activity (1997) Journal of Geophysical Research: Space Physics, 102 (A8), art. no. 97JA00937, pp. 17467-17473. Cited 32 times. http://agupubs.onlinelibrary.wiley.com/hub/jgr/journal/10.1002/(ISSN)2169-9402/ doi: 10.1029/97JA00937spa
dcterms.bibliographicCitationCooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N., Rasmussen, I.L., Byrnak, B., (...), Petrou, N. On cosmic-ray cut-off terminology (1991) Il Nuovo Cimento C, 14 (3), pp. 213-234. Cited 161 times. doi: 10.1007/BF02509357spa
dcterms.bibliographicCitationChowdhury, P., Kudela, K. Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017 (2018) Astrophysics and Space Science, 363 (12), art. no. 250. Cited 24 times. http://www.kluweronline.com/issn/0004-640X doi: 10.1007/s10509-018-3467-yspa
dcterms.bibliographicCitationLópez-Comazzi, A., Blanco, J.J. Short-Term Periodicities Observed in Neutron Monitor Counting Rates (Open Access) (2020) Solar Physics, 295 (6), art. no. 81. Cited 10 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-020-01649-5spa
dcterms.bibliographicCitationMavromichalaki, H., Preka-Papadema, P., Petropoulos, B., Tsagouri, I., Georgakopoulos, S., Polygiannakis, J. Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953-1996 (Open Access) (2003) Annales Geophysicae, 21 (8), pp. 1681-1689. Cited 40 times. http://www.ann-geophys.net/volumes_and_issues.html doi: 10.5194/angeo-21-1681-2003spa
dcterms.bibliographicCitationDomingues, M.O., Mendes Jr., O., Da Costa, A.M. On wavelet techniques in atmospheric sciences (2005) Advances in Space Research, 35 (5), pp. 831-842. Cited 107 times. http://www.journals.elsevier.com/advances-in-space-research/ doi: 10.1016/j.asr.2005.02.097spa
dcterms.bibliographicCitationChristodoulakis, J., Varotsos, C.A., Mavromichalaki, H., Efstathiou, M.N., Gerontidou, M. On the link between atmospheric cloud parameters and cosmic rays (Open Access) (2019) Journal of Atmospheric and Solar-Terrestrial Physics, 189, pp. 98-106. Cited 6 times. http://www.journals.elsevier.com/journal-of-atmospheric-and-solar-terrestrial-physics/ doi: 10.1016/j.jastp.2019.04.012spa
dcterms.bibliographicCitationKantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series (2002) Physica A: Statistical Mechanics and its Applications, 316 (1-4), pp. 87-114. Cited 2752 times. doi: 10.1016/S0378-4371(02)01383-3spa
dcterms.bibliographicCitationMovahed, M.S., Jafari, G.R., Ghasemi, F., Rahvar, S., Tabar, M.R.R. Multifractal detrended fluctuation analysis of sunspot time series (2006) Journal of Statistical Mechanics: Theory and Experiment, (2), art. no. P02003. Cited 268 times. doi: 10.1088/1742-5468/2006/02/P02003spa
dcterms.bibliographicCitationWang, Y., Liu, L., Gu, R. Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis (2009) International Review of Financial Analysis, 18 (5), pp. 271-276. Cited 182 times. doi: 10.1016/j.irfa.2009.09.005spa
dcterms.bibliographicCitationRizvi, S.A.R., Dewandaru, G., Bacha, O.I., Masih, M. An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA (2014) Physica A: Statistical Mechanics and its Applications, 407, pp. 86-99. Cited 114 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2014.03.091spa
dcterms.bibliographicCitationZhang, W., Wang, P., Li, X., Shen, D. The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average (2018) Physica A: Statistical Mechanics and its Applications, 510, pp. 658-670. Cited 94 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2018.07.032spa
dcterms.bibliographicCitationWang, Y., Wu, C., Pan, Z. Multifractal detrending moving average analysis on the US Dollar exchange rates (Open Access) (2011) Physica A: Statistical Mechanics and its Applications, 390 (20), pp. 3512-3523. Cited 86 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.05.023spa
dcterms.bibliographicCitationJiang, Z.-Q., Xie, W.-J., Zhou, W.-X., Sornette, D. Multifractal analysis of financial markets: A review (Open Access) (2019) Reports on Progress in Physics, 82 (12), art. no. 125901. Cited 155 times. https://iopscience.iop.org/article/10.1088/1361-6633/ab42fb/pdf doi: 10.1088/1361-6633/ab42fbspa
dcterms.bibliographicCitationShang, P., Lu, Y., Kamae, S. Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis (2008) Chaos, Solitons and Fractals, 36 (1), pp. 82-90. Cited 151 times. https://www.journals.elsevier.com/chaos-solitons-and-fractals doi: 10.1016/j.chaos.2006.06.019spa
dcterms.bibliographicCitationZhao, X., Shang, P., Lin, A., Chen, G. Multifractal Fourier detrended cross-correlation analysis of traffic signals (2011) Physica A: Statistical Mechanics and its Applications, 390 (21-22), pp. 3670-3678. Cited 92 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.06.018spa
dcterms.bibliographicCitationZhang, X., Liu, H., Zhao, Y., Zhang, X. Multifractal detrended fluctuation analysis on air traffic flow time series: A single airport case (2019) Physica A: Statistical Mechanics and its Applications, 531, art. no. 121790. Cited 23 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2019.121790spa
dcterms.bibliographicCitationWang, F., Liao, G.-P., Li, J.-H., Li, X.-C., Zhou, T.-J. Multifractal detrended fluctuation analysis for clustering structures of electricity price periods (Open Access) (2013) Physica A: Statistical Mechanics and its Applications, 392 (22), pp. 5723-5734. Cited 50 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2013.07.039spa
dcterms.bibliographicCitationYuan, X., Ji, B., Yuan, Y., Huang, Y., Li, X., Li, W. Multifractal detrended fluctuation analysis of electric load series (2015) Fractals, 23 (2), art. no. 1550010. Cited 11 times. http://www.worldscientific.com doi: 10.1142/S0218348X15500103spa
dcterms.bibliographicCitationKurnaz, M.L. Detrended fluctuation analysis as a statistical tool to monitor the climate (Open Access) (2004) Journal of Statistical Mechanics: Theory and Experiment, (7), art. no. P07009. Cited 18 times. http://iopscience.iop.org/1742-5468/2004/07/P07009/pdf/1742-5468_2004_07_P07009.pdf doi: 10.1088/1742-5468/2004/07/P07009spa
dcterms.bibliographicCitationWang, F., Liao, D.-W., Li, J.-W., Liao, G.-P. Two-dimensional multifractal detrended fluctuation analysis for plant identification (Open Access) (2015) Plant Methods, 11 (1), art. no. 12. Cited 34 times. http://www.plantmethods.com/ doi: 10.1186/s13007-015-0049-7spa
dcterms.bibliographicCitationOswiecimka, P., Drod, S., Kwapie, J., Górski, A.Z. Effect of detrending on multifractal characteristics (Open Access) (2013) Acta Physica Polonica A, 123 (3), pp. 597-603. Cited 51 times. http://przyrbwn.icm.edu.pl/APP/PDF/123/a123z3p18.pdf doi: 10.12693/APhysPolA.123.597spa
dcterms.bibliographicCitationKoldobskiy, S.A., Kähkönen, R., Hofer, B., Krivova, N.A., Kovaltsov, G.A., Usoskin, I.G. Time Lag Between Cosmic-Ray and Solar Variability: Sunspot Numbers and Open Solar Magnetic Flux (Open Access) (2022) Solar Physics, 297 (3), art. no. 38. Cited 12 times. http://www.kluweronline.com/issn/0038-0938 doi: 10.1007/s11207-022-01970-1spa
dcterms.bibliographicCitationDrozdz, S., Os̈więcimka, P. Detecting and interpreting distortions in hierarchical organization of complex time series (Open Access) (2015) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91 (3), art. no. 030902. Cited 102 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevE.91.030902/apsxml doi: 10.1103/PhysRevE.91.030902spa
dcterms.bibliographicCitationSierra Porta, D. Dataset: MultiFractal detrented fluctuations analysis on cosmic rays time series (2022) Mendeley Data, V2spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.physa.2022.128159
dc.subject.keywordsDetrended Fluctuation Analyse (DFA);spa
dc.subject.keywordsCross-Correlation;spa
dc.subject.keywordsHurst Exponentspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.