Mostrar el registro sencillo del ítem
Linear-based Newton-Raphson Approximation for Power Flow Solution in DC Power Grids
dc.contributor.author | Montoya, O.D | |
dc.contributor.author | Gil-González, W. | |
dc.contributor.author | Grisales-Noreña, L.F. | |
dc.date.accessioned | 2023-07-21T20:46:21Z | |
dc.date.available | 2023-07-21T20:46:21Z | |
dc.date.issued | 2018 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Montoya, O. D., Gil–González, W., & Grisales–Noreña, L. F. (2018, November). Linear–based Newton–Raphson approximation for power flow solution in DC power grids. In 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM) (pp. 1-6). IEEE. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12368 | |
dc.description.abstract | This paper presents a linear-based Newton method for load flow solution in DC power grids. This approximation is based on the classical Taylor's series expansion combined to the open-circuit voltage obtained when all the constant power load points are disconnected. This solution strategy avoids the usage of an iterative process to solve the load flow problem in DC power grids reducing its processing time. Notwithstanding its simplicity, the proposed method is very accurate when is compared to classical Gauss-Seidel or Newton-Raphson methods concerning the solution quality. Simulation results are conducted via MATLAB software by using two radial test feeders composed by 10 and 33 nodes reported in the specialized literature. © 2018 IEEE. | spa |
dc.format.extent | 6 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018 | spa |
dc.title | Linear-based Newton-Raphson Approximation for Power Flow Solution in DC Power Grids | spa |
dcterms.bibliographicCitation | Meng, L., Shafiee, Q., Trecate, G.F., Karimi, H., Fulwani, D., Lu, X., Guerrero, J.M. Review on Control of DC Microgrids and Multiple Microgrid Clusters (2017) IEEE Journal of Emerging and Selected Topics in Power Electronics, 5 (3), art. no. 7890986, pp. 928-948. Cited 426 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2017.2690219 | spa |
dcterms.bibliographicCitation | Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems (2016) IEEE Transactions on Power Systems, 31 (1), art. no. 7027253, pp. 827-828. Cited 213 times. doi: 10.1109/TPWRS.2015.2394296 | spa |
dcterms.bibliographicCitation | Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031 | spa |
dcterms.bibliographicCitation | Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 80 times. doi: 10.1016/j.epsr.2018.07.003 | spa |
dcterms.bibliographicCitation | Garces, A., Montoya, D., Torres, R. Optimal power flow in multiterminal HVDC systems considering DC/DC converters (Open Access) (2016) IEEE International Symposium on Industrial Electronics, 2016-November, art. no. 7745067, pp. 1212-1217. Cited 30 times. ISBN: 978-150900873-5 doi: 10.1109/ISIE.2016.7745067 | spa |
dcterms.bibliographicCitation | Li, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M. Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Transactions on Smart Grid, 8 (6), art. no. 7442160, pp. 2754-2764. Cited 130 times. doi: 10.1109/TSG.2016.2537402 | spa |
dcterms.bibliographicCitation | Barabanov, N., Ortega, R., Griñó, R., Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems with Constant Power Loads (2016) IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (1), art. no. 7328761, pp. 114-121. Cited 81 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919 doi: 10.1109/TCSI.2015.2497559 | spa |
dcterms.bibliographicCitation | Bergamaschi, L., Bru, R., Martínez, A., Putti, M. Quasi-Newton acceleration of ILU preconditioners for nonlinear two-phase flow equations in porous media (2012) Advances in Engineering Software, 46 (1), pp. 63-68. Cited 9 times. http://www.journals.elsevier.com/advances-in-engineering-software/ doi: 10.1016/j.advengsoft.2010.10.011 | spa |
dcterms.bibliographicCitation | Henderson, N., Simão, G., Sacco, W.F. Study of a Jacobian-free approach in the simulation of compressible fluid flows in porous media using a derivative-free spectral method (Open Access) (2015) Advances in Engineering Software, 81 (C), pp. 17-29. http://www.journals.elsevier.com/advances-in-engineering-software/ doi: 10.1016/j.advengsoft.2014.10.005 | spa |
dcterms.bibliographicCitation | Todescato, M. DC power flow feasibility: Positive vs. negative loads (Open Access) (2017) 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, 2018-January, pp. 3258-3263. Cited 4 times. ISBN: 978-150902873-3 doi: 10.1109/CDC.2017.8264137 | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018 | spa |
dcterms.bibliographicCitation | Nasir, M., Khan, H.A., Hussain, A., Mateen, L., Zaffar, N.A. Solar PV-based scalable DC microgrid for rural electrification in developing regions (Open Access) (2018) IEEE Transactions on Sustainable Energy, 9 (1), pp. 390-399. Cited 167 times. doi: 10.1109/TSTE.2017.2736160 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1109/EPIM.2018.8756465 | |
dc.subject.keywords | Microgrid; | spa |
dc.subject.keywords | DC-DC Converter; | spa |
dc.subject.keywords | Electric Potential | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.