Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez-Conde, Jorge Mario
dc.contributor.authorPatiño-Vanegas, Alberto
dc.date.accessioned2023-07-21T20:46:13Z
dc.date.available2023-07-21T20:46:13Z
dc.date.issued2021
dc.date.submitted2023
dc.identifier.citationMartínez-Conde, J. M., & Patiño-Vanegas, A. (2021). Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks. Dyna, 88(219), 247-255.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12367
dc.description.abstractAbstract The development of new molecules is a multi-stage process and clinical trials to verify their efficacy cost billions of dollars each year. Machine learning is a tool that is rapidly advancing in image, voice, and text recognition, and working in silico would increase the ability to predict and prioritize a drug's function. In this research we asked whether the function of therapeutic drugs can be predicted from the stereochemical configuration of the molecule. We use convolutional neural networks to predict the therapeutic use of drugs, trained with both two-dimensional and three-dimensional information of their chemical structure. The model trained with only six views of the 3D information of the molecular structure improved the accuracy by 10 over the model trained with the 2D information. © 2021, Universidad Nacional de Colombia. All rights reserved.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceDYNA (Colombia)spa
dc.titleLearning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networksspa
dc.title.alternative[Aprendizaje del uso terapéutico de fármacos a partir de la información espacial tridimensional de su estructura molecular con redes neuronales convolucionalesspa
dcterms.bibliographicCitationLipkus, A.H., Yuan, Q., Lucas, K.A., Funk, S.A., Bartelt III, W.F., Schenck, R.J., Trippe, A.J. Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry (2008) Journal of Organic Chemistry, 73 (12), pp. 4443-4451. Cited 256 times. doi: 10.1021/jo8001276spa
dcterms.bibliographicCitationRuddigkeit, L., Van Deursen, R., Blum, L.C., Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17 (2012) Journal of Chemical Information and Modeling, 52 (11), pp. 2864-2875. Cited 707 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/ci300415dspa
dcterms.bibliographicCitationLipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings (2001) Advanced Drug Delivery Reviews, 46 (1-3), pp. 3-26. Cited 8868 times. www.elsevier.com/locate/drugdeliv doi: 10.1016/S0169-409X(00)00129-0spa
dcterms.bibliographicCitationHann, M.M. Molecular obesity, potency and other addictions in drug discovery (2011) MedChemComm, 2 (5), pp. 349-355. Cited 283 times. doi: 10.1039/c1md00017aspa
dcterms.bibliographicCitationBolten, B.M., DeGregorio, T. Trends in development cycles. Market indicators (2002) Nature Reviews Drug Discovery, 1 (5), pp. 335-336. Cited 58 times. doi: 10.1038/nrd805spa
dcterms.bibliographicCitationDearden, J.C. In silico prediction of drug toxicity (2003) Journal of Computer-Aided Molecular Design, 17 (2-4), pp. 119-127. Cited 216 times. https://www.springer.com/journal/10822 doi: 10.1023/A:1025361621494spa
dcterms.bibliographicCitationTorres, J Python deep learning: introducción práctica con Keras y TensorFlow 2 (2020) . Cited 7 times. Marcombo; [online] https://books.google.com.co/books?id=5vpmzQEACAAJspa
dcterms.bibliographicCitationFerdousi, R., Safdari, R., Omidi, Y. Computational prediction of drug-drug interactions based on drugs functional similarities (2017) Journal of Biomedical Informatics, 70, pp. 54-64. Cited 96 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2017.04.021spa
dcterms.bibliographicCitationEllison, N. Goodman & Gilman’s The Pharmacological Basis of therapeutics (2002) Anesthesia & Analgesia, 94 (5), p. 1377. Cited 6 times. 10th Ed., [online]. P https://journals.lww.com/anesthesia-analgesia/Fulltext/2002/05000/Goodman___Gilman_s_The_Pharmacological_Basis_of.85.aspxspa
dcterms.bibliographicCitationAliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data (Open Access) (2016) Molecular Pharmaceutics, 13 (7), pp. 2524-2530. Cited 319 times. http://pubs.acs.org/journal/mpohbp doi: 10.1021/acs.molpharmaceut.6b00248spa
dcterms.bibliographicCitationRogers, D., Hahn, M. Extended-connectivity fingerprints (2010) Journal of Chemical Information and Modeling, 50 (5), pp. 742-754. Cited 3388 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/ci100050tspa
dcterms.bibliographicCitationMeyer, J.G., Liu, S., Miller, I.J., Coon, J.J., Gitter, A. Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests (2019) Journal of Chemical Information and Modeling. Cited 44 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.9b00236spa
dcterms.bibliographicCitationLengauer, T., Rarey, M. Computational methods for biomolecular docking (1996) Current Opinion in Structural Biology, 6 (3), pp. 402-406. Cited 551 times. http://www.elsevier.com/locate/sbi doi: 10.1016/S0959-440X(96)80061-3spa
dcterms.bibliographicCitationWei, B.Q., Weaver, L.H., Ferrari, A.M., Matthews, B.W., Shoichet, B.K. Testing a flexible-receptor docking algorithm in a model binding site (2004) Journal of Molecular Biology, 337 (5), pp. 1161-1182. Cited 185 times. https://www.journals.elsevier.com/journal-of-molecular-biology doi: 10.1016/j.jmb.2004.02.015spa
dcterms.bibliographicCitationShoichet, B.K., Kuntz, I.D., Bodian, D.L. Molecular docking using shape descriptors (Open Access) (1992) Journal of Computational Chemistry, 13 (3), pp. 380-397. Cited 374 times. doi: 10.1002/jcc.540130311spa
dcterms.bibliographicCitationJiménez, J., Škalič, M., Martínez-Rosell, G., De Fabritiis, G. KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks (2018) Journal of Chemical Information and Modeling, 58 (2), pp. 287-296. Cited 428 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.7b00650spa
dcterms.bibliographicCitationLowe, H.J., Barnett, G.O. Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches (1994) JAMA, 271 (14), pp. 1103-1108. Cited 346 times. http://jama.jamanetwork.com/journal.aspx doi: 10.1001/jama.271.14.1103spa
dcterms.bibliographicCitationMeyer, J.G., Liu, S., Miller, I.J., Coon, J.J., Gitter, A. Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests (Open Access) (2019) Journal of Chemical Information and Modeling. Cited 44 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.9b00236spa
dcterms.bibliographicCitationRagoza, M., Hochuli, J., Idrobo, E., Sunseri, J., Koes, D.R. Protein-Ligand Scoring with Convolutional Neural Networks (2017) Journal of Chemical Information and Modeling, 57 (4), pp. 942-957. Cited 429 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.6b00740spa
dcterms.bibliographicCitationKim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., (...), Bolton, E.E. PubChem in 2021: New data content and improved web interfaces (Open Access) (2021) Nucleic Acids Research, 49 (D1), pp. D1388-D1395. Cited 1480 times. https://academic.oup.com/nar/issue doi: 10.1093/nar/gkaa971spa
dcterms.bibliographicCitationAnderson, E., Veith, G.D., Weininger, D. (1987) SMILES, a Line Notation and Computerized Interpreter for Chemical Structures. Environmental research brief. Cited 78 times. and Environmental Research Laboratory (Duluth, Minn)., U.S. Environmental Protection Agency, Environmental Research Laboratory, Ed., [online]. 4P https://books.google.com.co/books?id=KSofvgAACAAJspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.15446/dyna.v88n219.92778
dc.subject.keywordsChemoinformatics;spa
dc.subject.keywordsDrug Discovery;spa
dc.subject.keywordsTopographic Mappingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.