Mostrar el registro sencillo del ítem

dc.contributor.authorDe La Cruz Natera, Alejandra
dc.contributor.authorCordero García, Adriana
dc.contributor.authorRestrepo Betancourt, Juan
dc.contributor.authorArias Tapia, Mary Judith
dc.date.accessioned2023-07-21T20:45:56Z
dc.date.available2023-07-21T20:45:56Z
dc.date.issued2022-09-01
dc.date.submitted2023-07
dc.identifier.citationDe La Cruz Natera, A., Cordero García, A., Restrepo Betancourt, J., Arias Tapia, M. & Vargas Ceballos, O. (2022). Polylactic acid effectively reinforced with reduced graphitic oxide. Journal of Polymer Engineering, 42(8), 736-743. https://doi.org/10.1515/polyeng-2021-0363spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12365
dc.description.abstractThe present study was developed to reinforce a thermoplastic matrix with carbonaceous material to improve its thermal and mechanical properties. Composite materials formed from the homogenization of polylactic acid (PLA) and reduced graphitic oxide (RGO) were synthesized and characterized, reinforcement of the polymer's thermomechanical properties and the adequate homogeneity ratio in the dispersion of the composite material were studied. Graphitic oxide (GO) was synthesized by the modified Hummers method, followed by thermal exfoliation. The chemical composition and the structure of RGO were studied by infrared (FT-IR) and Raman spectroscopies, respectively. PLA composites with different RGO contents (2 and 3% by weight) were prepared and compared in terms of distribution of RGO in the matrix and morphology, using scanning electron microscopy. The thermal stability of the composites was determined through thermogravimetric analysis. Torque of the different composites was measured, which increased at 21%; the tensile test showed an improvement in the mechanical parameters of the composites because the RGO favors the rigidity of the composite. In addition, the oxygenated functional groups present in the RGO allowed a more significant interaction with the PLA matrix, which results in an effective reinforcement of the mechanical properties of the composite materialspa
dc.format.extent8 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Polymer Engineering - Vol. 42 No. 8 (2022)spa
dc.titlePolylactic acid effectively reinforced with reduced graphitic oxidespa
dcterms.bibliographicCitationTsuji, H., Echizen, Y., Nishimura, Y. Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(ε-caprolactone) (2006) Polymer Degradation and Stability, 91 (5), pp. 1128-1137. Cited 144 times. doi: 10.1016/j.polymdegradstab.2005.07.007spa
dcterms.bibliographicCitationAuras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications (2010) Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. Cited 906 times. http://onlinelibrary.wiley.com/book/10.1002/9780470649848 ISBN: 978-047029366-9 doi: 10.1002/9780470649848spa
dcterms.bibliographicCitationOksman, K., Skrifvars, M., Selin, J.-F. Natural fibres as reinforcement in polylactic acid (PLA) composites (2003) Composites Science and Technology, 63 (9), pp. 1317-1324. Cited 1286 times. http://www.journals.elsevier.com/composites-science-and-technology/ doi: 10.1016/S0266-3538(03)00103-9spa
dcterms.bibliographicCitationLiu, H., Zhang, J. Research progress in toughening modification of poly(lactic acid) (2011) Journal of Polymer Science, Part B: Polymer Physics, 49 (15), pp. 1051-1083. Cited 632 times. doi: 10.1002/polb.22283spa
dcterms.bibliographicCitationHo, M.-P., Lau, K.-T., Wang, H., Hui, D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles (2015) Composites Part B: Engineering, 81, art. no. 3647, pp. 14-25. Cited 179 times. doi: 10.1016/j.compositesb.2015.05.048spa
dcterms.bibliographicCitationDomínguez-Robles, J., Martin, N.K., Fong, M.L., Stewart, S.A., Irwin, N.J., Rial-Hermida, M.I., Donnelly, R.F., (...), Larrañeta, E. Antioxidant pla composites containing lignin for 3D printing applications: A potential material for healthcare applications (2019) Pharmaceutics, 11 (4), art. no. 165. Cited 153 times. https://www.mdpi.com/1999-4923/11/4/165/pdf doi: 10.3390/pharmaceutics11040165spa
dcterms.bibliographicCitationPotts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S. Graphene-based polymer nanocomposites (2011) Polymer, 52 (1), pp. 5-25. Cited 2662 times. http://www.journals.elsevier.com/polymer/ doi: 10.1016/j.polymer.2010.11.042spa
dcterms.bibliographicCitationVargas C., O.A., Caballero, A., Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? (2012) Nanoscale, 4 (6), pp. 2083-2092. Cited 122 times. http://www.rsc.org/publishing/journals/NR/Index.asp doi: 10.1039/c2nr11936fspa
dcterms.bibliographicCitationInternational, C.A. (2021) Standard Practice for Injection Molding Test Specimens of Thermoplastic Molding and Extrusion Materials USAspa
dcterms.bibliographicCitation(2015) Standard Test Method for Tensile Properties of Plastics. Cited 198 times. C. A. International USAspa
dcterms.bibliographicCitationLoryuenyong, V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo, W., Buasri, A. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods (2013) Advances in Materials Science and Engineering, 2013, art. no. 923403. Cited 270 times. doi: 10.1155/2013/923403spa
dcterms.bibliographicCitationFerrari, A., Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon (2000) Physical Review B - Condensed Matter and Materials Physics, 61 (20), pp. 14095-14107. Cited 12095 times. doi: 10.1103/PhysRevB.61.14095spa
dcterms.bibliographicCitationPascal, P., Kandara, M., Paredes, G., Moulin, L., Weiss-Hortala, E., Kundu, A., Ratel, N., (...), Monthloux, M. Analyzing the Raman spectra of graphenic xarbon materials from kerogens to nanotubes: What type of information can be extracted from defect bands? (2019) J. Carbon Res., 5, p. 69. Cited 88 times.spa
dcterms.bibliographicCitationWojtoniszak, M., Chen, X., Kalenczuk, R.J., Wajda, A., Łapczuk, J., Kurzewski, M., Drozdzik, M., (...), Borowiak-Palen, E. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide (2012) Colloids and Surfaces B: Biointerfaces, 89 (1), pp. 79-85. Cited 349 times. www.elsevier.com/locate/colsurfb doi: 10.1016/j.colsurfb.2011.08.026spa
dcterms.bibliographicCitationSahoo, M., Antony, R.P., Mathews, T., Dash, S., Tyagi, A.K. Raman studies of chemically and thermally reduced graphene oxide (2013) AIP Conference Proceedings, 1512, pp. 1262-1263. Cited 26 times. ISBN: 978-073541133-3 doi: 10.1063/1.4791511spa
dcterms.bibliographicCitationWang, F., Zhang, K. Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B (2011) Journal of Molecular Catalysis A: Chemical, 345 (1-2), pp. 101-107. Cited 226 times. doi: 10.1016/j.molcata.2011.05.026spa
dcterms.bibliographicCitationMazzoli, A., Favoni, O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program (2012) Powder Technology, 225, pp. 65-71. Cited 130 times. doi: 10.1016/j.powtec.2012.03.033spa
dcterms.bibliographicCitationDittrich, B., Wartig, K.-A., Hofmann, D., Mülhaupt, R., Schartel, B. Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites (2013) Polymers for Advanced Technologies, 24 (10), pp. 916-926. Cited 125 times. doi: 10.1002/pat.3165spa
dcterms.bibliographicCitationWang, K., Hu, N.-X., Xu, G., Qi, Y. Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer (Open Access) (2011) Carbon, 49 (5), pp. 1769-1774. Cited 53 times. doi: 10.1016/j.carbon.2010.12.063spa
dcterms.bibliographicCitationZhang, W., Zuo, H., Zhang, X., Wang, J., Guo, L., Peng, X. Preparation of graphene-perfluoroalkoxy composite and thermal and mechanical properties (2018) Polymers, 10 (7), art. no. 700. Cited 17 times. http://www.mdpi.com/2073-4360/10/7/700/pdf doi: 10.3390/polym10070700spa
dcterms.bibliographicCitationBecerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors (2008) ACS Nano, 2 (3), pp. 463-470. Cited 2890 times. doi: 10.1021/nn700375nspa
dcterms.bibliographicCitationD'Urso, L., Acocella, M.R., Guerra, G., Iozzino, V., De Santis, F., Pantani, R. PLA melt stabilization by high-surface-area graphite and carbon black (2018) Polymers, 10 (2), art. no. 139. Cited 18 times. http://www.mdpi.com/2073-4360/10/2/139/pdf doi: 10.3390/polym10020139spa
dcterms.bibliographicCitationKim, I.H., Jeong, Y.G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity (2010) Journal of Polymer Science, Part B: Polymer Physics, 48 (8), pp. 850-858. Cited 282 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/123308832/PDFSTART doi: 10.1002/polb.21956spa
dcterms.bibliographicCitationSangurima, E.X., Maldonado, F.M. (2016) Degree Thesis Universidad Politécnica Salesiana De Ecuadorspa
dcterms.bibliographicCitationMensah, B., Kang, S.I., Wang, W., Nah, C. Effect of graphene on polar and nonpolar rubber matrices (2018) Mech. Adv. Mater. Modern Process., 4, pp. 1-12. Cited 29 times. https://doi.org/10.1186/s40759-017-0034-0spa
dcterms.bibliographicCitationDomínguez-Robles, J., Larrañeta, E., Fong, M.L., Martin, N.K., Irwin, N.J., Mutjé, P., Tarrés, Q., (...), Delgado-Aguilar, M. Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications (2020) International Journal of Biological Macromolecules, 145, pp. 92-99. Cited 95 times. www.elsevier.com/locate/ijbiomac doi: 10.1016/j.ijbiomac.2019.12.146spa
dcterms.bibliographicCitationGerardo, M., Salavagione, H. Nanocompuestos poliméricos a partir de grafeno (2010) Rev. Plast. Mod., 646, pp. 336-346.spa
dcterms.bibliographicCitationShahbazi, M., Jäger, H. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges (2021) ACS Applied Bio Materials, 4 (1), pp. 325-369. Cited 52 times. pubs.acs.org/journal/aabmcb doi: 10.1021/acsabm.0c01379spa
dcterms.bibliographicCitationGoutham, R., Veena, T.R., Babagowda, Prasad, K.R.S. Study on mechanical properties of recycled Acrylonitrile Butadiene Styrene (ABS) blended with virgin Acrylonitrile Butadiene Styrene (ABS) using Taguchi method (Open Access) (2018) Materials Today: Proceedings, Part 3 5 (11), pp. 24836-24845. Cited 11 times. https://www.sciencedirect.com/journal/materials-today-proceedings doi: 10.1016/j.matpr.2018.10.282spa
dcterms.bibliographicCitationAmza, C.G., Zapciu, A., Eyórsdóttir, A., Björnsdóttir, A., Borg, J. Mechanical properties of 3D printed composites with ABS/ASA substrate and glass fiber inserts (Open Access) (2019) MATEC Web of Conferences, 290, art. no. 04002. Cited 4 times. http://www.matec-conferences.org/ doi: 10.1051/matecconf/201929004002spa
dcterms.bibliographicCitationFranciszczak, P., Piesowicz, E., Kalniņš, K. Manufacturing and properties of r-PETG/PET fibre composite – Novel approach for recycling of PETG plastic scrap into engineering compound for injection moulding (Open Access) (2018) Composites Part B: Engineering, 154, pp. 430-438. Cited 17 times. doi: 10.1016/j.compositesb.2018.09.023spa
dcterms.bibliographicCitationZhang, W., Xu, Y. (2019) Mechanical Properties of Polycarbonate ISTE Press Ltd, Elsevier Ltd London 1stChapterspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1515/polyeng-2021-0363
dc.subject.keywordsCompositespa
dc.subject.keywordsMechanical propertiesspa
dc.subject.keywordsPolylactic acidspa
dc.subject.keywordsReduced graphitic oxidespa
dc.subject.keywordsReinforcementspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.