Mostrar el registro sencillo del ítem

dc.contributor.authorBarranco, Carlos, A.
dc.contributor.authorOrozco Henao, C.
dc.contributor.authorMarín Quintero, J.
dc.contributor.authorMora Flórez, J.
dc.contributor.authorHerrera Orozco, A.
dc.date.accessioned2023-07-21T16:26:30Z
dc.date.available2023-07-21T16:26:30Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationCarlos, A. B., Henao, C. O., Quintero, J. M., Flórez, J. M., & Orozco, A. H. (2022, November). Clustering techniques performance for the coordination of adaptive overcurrent protections. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12353
dc.description.abstractInclusion of distributed generation and topological changes in a network originate several operating scenarios. For this reason, techniques that adjust the configuration of overcurrent relays have been developed in order to provide protection coordination strategies capable of operating in different schemes. However, the adjustments allowed by these devices are limited. Thus, scenario grouping techniques are proposed to reduce the number of required configurations. This paper aims to evaluate the performance of different grouping techniques with input parameters for coordination strategies of electrical overcurrent protections, where it is required to associate the different modes of operation of a distribution network. For the clustering process, unsupervised learning techniques such as K-means, K-medoids and Agglomerative Hierarchical Clustering were employed. Additionally, for the input characteristics, fault currents, nominal currents and other parameters obtained from the electrical system were taken into account. From the results obtained when evaluating different combinations of techniques and inputs, it is important to mention that the characteristics that describe the different modes of operation necessary for the grouping are decisive for the coordination strategies of electrical protections and that it is not possible to establish a significant difference between the clustering techniques evaluated. Lastly, the combination that presents the best performance was K-means: Manhattan and maximum short-circuit phase currents per relay with a sum of operation time of 428.72s and zero restriction violation. © 2022 IEEE.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2022 IEEE ANDESCON: Technology and Innovation for Andean Industryspa
dc.titleClustering Techniques Performance for the Coordination of Adaptive Overcurrent Protectionsspa
dcterms.bibliographicCitationBritish Petroleum: 2020 Edition https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energyoutlook/bp-energy-outlook-2020.pdfspa
dcterms.bibliographicCitationTon, D.T., Smith, M.A. The U.S. Department of Energy's Microgrid Initiative (2012) Electricity Journal, 25 (8), pp. 84-94. Cited 417 times. doi: 10.1016/j.tej.2012.09.013spa
dcterms.bibliographicCitationTheo, W.L., Lim, J.S., Ho, W.S., Hashim, H., Lee, C.T. Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods (2017) Renewable and Sustainable Energy Reviews, 67, pp. 531-573. Cited 211 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.09.063spa
dcterms.bibliographicCitationBrearley, B.J., Prabu, R.R. A review on issues and approaches for microgrid protection (2017) Renewable and Sustainable Energy Reviews, 67, pp. 988-997. Cited 176 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.09.047spa
dcterms.bibliographicCitationSouza, F.C., Souza, B.A. Adaptive overcurrent adjustment settings: A case study using RTDS® (2013) 2013 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT LA 2013, art. no. 6554469. Cited 13 times. ISBN: 978-146735274-1 doi: 10.1109/ISGT-LA.2013.6554469spa
dcterms.bibliographicCitationZhang, G., Guo, B., Liang, Y. A classification method for adaptive relay protection setting system based on clustering analysis (2011) APAP 2011 - Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, 3, art. no. 6180633, pp. 1819-1823. Cited 3 times. ISBN: 978-142449619-8 doi: 10.1109/APAP.2011.6180633spa
dcterms.bibliographicCitationKanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y. An efficient k-means clustering algorithms: Analysis and implementation (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (7), pp. 881-892. Cited 4154 times. doi: 10.1109/TPAMI.2002.1017616spa
dcterms.bibliographicCitationDong, J., Qi, M. K-means optimization algorithm for solving clustering problem (2009) Proceedings - 2009 2nd International Workshop on Knowledge Discovery and Data Mining, WKKD 2009, art. no. 4771876, pp. 52-55. Cited 16 times. ISBN: 978-076953543-2 doi: 10.1109/WKDD.2009.85spa
dcterms.bibliographicCitationKapil, S., Chawla, M. Performance evaluation of K-means clustering algorithm with various distance metrics (2016) 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, art. no. 7853264. Cited 35 times. ISBN: 978-146738587-9 doi: 10.1109/ICPEICES.2016.7853264spa
dcterms.bibliographicCitationOjaghi, M., Mohammadi, V. Use of Clustering to Reduce the Number of Different Setting Groups for Adaptive Coordination of Overcurrent Relays (2018) IEEE Transactions on Power Delivery, 33 (3), pp. 1204-1212. Cited 72 times. doi: 10.1109/TPWRD.2017.2749321spa
dcterms.bibliographicCitationSamadi, A., Mohammadi Chabanloo, R. Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups (2020) International Journal of Electrical Power and Energy Systems, 120, art. no. 106026. Cited 35 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106026spa
dcterms.bibliographicCitationGhadiri, S.M.E., Mazlumi, K. Adaptive protection scheme for microgrids based on SOM clustering technique (2020) Applied Soft Computing Journal, 88, art. no. 106062. Cited 39 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.106062spa
dcterms.bibliographicCitationSaldarriaga-Zuluaga, S.D., Zuluaga, C.D., Muñoz-Galeano, N., López-Lezama, J.M. Optimal coordination of overcurrent relays in microgrids using a metaheuristic approach (2020) International Journal of Engineering Research and Technology, 13 (9), pp. 2213-2218. http://www.irphouse.com/ijert20/ijertv13n9_15.pdfspa
dcterms.bibliographicCitationGers, J.M., Holmes, E.J. (2011) Institution of Electrical Engineers: Protection of Electricity Distribution Networks. Energy Engineering Institution of Engineering and Technology, ISBN 9781849192231spa
dcterms.bibliographicCitationOvercurrent and Feeder Protection-SIPROTEC 7SJ82-Siemens Ag siemens.com Global Website https://cache.industry.siemens.comspa
dcterms.bibliographicCitationYang, H., Liu, X., Zhang, D., Chen, T., Li, C., Huang, W. Machine learning for power system protection and control (2021) Electricity Journal, 34 (1), art. no. 106881. Cited 22 times. http://www.electricity-online.com doi: 10.1016/j.tej.2020.106881spa
dcterms.bibliographicCitationMirjalili, S. (2020) Evolutionary Machine Learning Techniques: Algorithms and Applications. Cited 190 times. Springer Nature Singaporespa
dcterms.bibliographicCitationSaxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., (...), Lin, C.-T. A review of clustering techniques and developments (2017) Neurocomputing, 267, pp. 664-681. Cited 646 times. www.elsevier.com/locate/neucom doi: 10.1016/j.neucom.2017.06.053spa
dcterms.bibliographicCitationK-means Clustering-MATLAB Kmeans-MathWorks https://la.mathworks.com/help/stats/kmeans.html?lang=enspa
dcterms.bibliographicCitationCao, D., Yang, B. An improved k-medoids clustering algorithm (2010) 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 3, art. no. 5452085, pp. 132-135. Cited 27 times. ISBN: 978-142445585-0 doi: 10.1109/ICCAE.2010.5452085spa
dcterms.bibliographicCitationNazari, Z., Kang, D., Asharif, M.R., Sung, Y., Ogawa, S. A new hierarchical clustering algorithm (2015) ICIIBMS 2015 - International Conference on Intelligent Informatics and Biomedical Sciences, art. no. 7439517, pp. 148-152. Cited 45 times. ISBN: 978-147998562-3 doi: 10.1109/ICIIBMS.2015.7439517spa
dcterms.bibliographicCitationConstruct Agglomerative Clusters from Data-MATLAB Clusterdata https://la.mathworks.com/help/stats/clusterdata.htmlspa
dcterms.bibliographicCitation(2001) IEEE 34 Node Test Feeder. Cited 5 times. Distribution System Analysis Subcommittee https://site.ieee.org/pes-Testfeeders/resources/spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/ANDESCON56260.2022.9989786
dc.subject.keywordsOvercurrent Protection;spa
dc.subject.keywordsMicrogrid;spa
dc.subject.keywordsFault Current Limitersspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.