Mostrar el registro sencillo del ítem

dc.contributor.authorCabarcas-Mena, Yina P.
dc.contributor.authorMarrugo, Andres G.
dc.contributor.authorContreras-Ortiz, Sonia H.
dc.date.accessioned2023-07-21T16:25:40Z
dc.date.available2023-07-21T16:25:40Z
dc.date.issued2021
dc.date.submitted2023
dc.identifier.citationCabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12347
dc.description.abstractAttention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challenge with ADHD children. This work proposes a method for classification of ADHD and control cases from cognitive event-related potentials using recurrence plots and deep learning. A total of 44 children were included in this study (22 children with ADHD and 22 case controls). The signals were processed by a high-pass filter to eliminate DC components, wavelets transform with six decomposition levels, and synchronized averaging for each of the six channels (F3, AF3, F4, AF4, F7 and F8). Subsequently, the recurrence plot of each of the processed signals was obtained and used as inputs for two convolutional neural networks (CNN). The proposed models showed accuracies of 69.44% and 77,78%. © 2021 IEEEspa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA)spa
dc.titleClassification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNsspa
dcterms.bibliographicCitationVásquez, J., Cárdenas, E.M., Feria, M., Benjet, C., Palacios, L., De La Peñ, F. Guía clínica para el trastorno por déficit de atención e hiperactividad (2010) DF Guías Clínicas Para la Atención de Trastornos Mentales, Instituto Nacional de Psiquiatría Ramón de la Fuente. Cited 7 times. Berenzon S, Del Bosque J, Alfaro J, Medina-Mora ME. Méxicospa
dcterms.bibliographicCitationLenartowicz, A., Loo, S.K. Use of EEG to Diagnose ADHD (2014) Current Psychiatry Reports, 16 (11), art. no. 498. Cited 154 times. http://www.springerlink.com/content/1523-3812/ doi: 10.1007/s11920-014-0498-0spa
dcterms.bibliographicCitationMercado-Aguirre, I.M., Gutiérrez-Ruiz, K., Contreras-Ortiz, S.H. Acquisition and Analysis of Cognitive Evoked Potentials using an Emotiv Headset for ADHD Evaluation in Children (2019) 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings, art. no. 8730225. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8719845 ISBN: 978-172811491-0 doi: 10.1109/STSIVA.2019.8730225spa
dcterms.bibliographicCitationMohammadi, M.R., Khaleghi, A., Nasrabadi, A.M., Rafieivand, S., Begol, M., Zarafshan, H. EEG classification of ADHD and normal children using non-linear features and neural network (2016) Biomedical Engineering Letters, 6 (2), pp. 66-73. Cited 110 times. http://www.springer.com/engineering/biomedical+eng/journal/13534 doi: 10.1007/s13534-016-0218-2spa
dcterms.bibliographicCitationGhassemi, F., Hassan, M., Tehrani-Doost, M., Abootalebi, V. Using non-linear features of EEG for ADHD/normal participants' classification (2012) Procedia - Social and Behavioral Sciences, 32, pp. 148-152. Cited 34 times. http://www.sciencedirect.com/science/journal/18770428/1 doi: 10.1016/j.sbspro.2012.01.024spa
dcterms.bibliographicCitationMercado-Aguirre, I.M., Gutierrez-Ruiz, K.P., Contreras-Ortiz, S.H. EEG feature selection for ADHD detection in children (2020) 16th International Symposium on Medical Information Processing and Analysis 11583 International Society for Optics and Photonicsspa
dcterms.bibliographicCitationNima, H., Gavet, Y., Debayle, J. Classification of time-series images using deep convolutional neural networks (2017) Tenth International Conference on Machine Vision ICMV, p. 2018. Cited 2 times. 10696. International Society for Optics and Photonicsspa
dcterms.bibliographicCitationZeng, M., Zhang, X., Zhao, C., Lu, X., Meng, Q. GRP-DNet: A gray recurrence plot-based densely connected convolutional network for classification of epileptiform EEG (2021) Journal of Neuroscience Methods, 347, art. no. 108953. Cited 16 times. www.elsevier.com/locate/jneumeth doi: 10.1016/j.jneumeth.2020.108953spa
dcterms.bibliographicCitationEckmann, J.-P., Oliffson Kamphorst, O., Ruelle, D. Recurrence plots of dynamical systems (1987) EPL, 4 (9), pp. 973-977. Cited 2000 times. doi: 10.1209/0295-5075/4/9/004spa
dcterms.bibliographicCitationRoh, D., Shin, H. Recurrence plot and machine learning for signal quality assessment of photoplethysmogram in mobile environment (Open Access) (2021) Sensors, 21 (6), art. no. 2188, pp. 1-12. Cited 12 times. https://www.mdpi.com/1424-8220/21/6/2188/pdf doi: 10.3390/s21062188spa
dcterms.bibliographicCitationWebber Jr., C.L., Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies (Open Access) (1994) Journal of Applied Physiology, 76 (2), pp. 965-973. Cited 1158 times. https://www.physiology.org/journal/jappl doi: 10.1152/jappl.1994.76.2.965spa
dcterms.bibliographicCitationAcharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., Ang, P.C.A. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals (Open Access) (2011) International Journal of Neural Systems, 21 (3), pp. 199-211. Cited 277 times. doi: 10.1142/S0129065711002808spa
dcterms.bibliographicCitationGarcia-Ceja, E., Uddin, M.Z., Torresen, J. Classification of Recurrence Plots' Distance Matrices with a Convolutional Neural Network for Activity Recognition (Open Access) (2018) Procedia Computer Science, 130, pp. 157-163. Cited 46 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2018.04.025spa
dcterms.bibliographicCitationGu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., (...), Chen, T. Recent advances in convolutional neural networks (2018) Pattern Recognition, 77, pp. 354-377. Cited 2608 times. www.elsevier.com/inca/publications/store/3/2/8/ doi: 10.1016/j.patcog.2017.10.013spa
dcterms.bibliographicCitationKrizhevsky, A., Sutskever, I., Hinton, G.E. ImageNet classification with deep convolutional neural networks (Open Access) (2012) Advances in Neural Information Processing Systems, 2, pp. 1097-1105. Cited 71780 times. ISBN: 978-162748003-1spa
dcterms.bibliographicCitationChollet, F. (2015) Keras. Cited 7684 times. https://github.com/fchollet/kerasspa
dcterms.bibliographicCitationKingma, D.P., Ba, J. Adam: A Method for Stochastic Optimization. Cited 51822 times. CoRR abs/1412.6980. arXiv 1412.6980spa
dcterms.bibliographicCitationSrivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting (Open Access) (2014) Journal of Machine Learning Research, 15, pp. 1929-1958. Cited 26055 times. http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdfspa
dcterms.bibliographicCitationYing, X. An Overview of Overfitting and its Solutions (Open Access) (2019) Journal of Physics: Conference Series, 1168 (2), art. no. 022022. Cited 558 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1168/2/022022spa
dcterms.bibliographicCitationMarwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data (Open Access) (2002) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66 (2). Cited 798 times. doi: 10.1103/PhysRevE.66.026702spa
dcterms.bibliographicCitationSultornsanee, S., Zeid, I., Kamarthi, S. Classification of electromyogram using recurrence quantification analysis (2011) Procedia Computer Science, 6, pp. 375-380. Cited 15 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2011.08.069spa
dcterms.bibliographicCitationLi, Y., Ma, S., Hu, Z., Chen, J., Su, G., Dou, W. Single trial EEG classification applied to a face recognition experiment using different feature extraction methods (2015) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-November, art. no. 7320064, pp. 7246-7249. Cited 3 times. ISBN: 978-142449271-8 doi: 10.1109/EMBC.2015.7320064spa
dcterms.bibliographicCitationLiu, G., Zhou, W., Geng, M. Automatic Seizure Detection Based on S-Transform and Deep Convolutional Neural Network (2020) International Journal of Neural Systems, 30 (4), art. no. 1950024. Cited 57 times. http://www.worldscinet.com/ijns/ijns.shtml doi: 10.1142/S0129065719500242spa
dcterms.bibliographicCitationAltınkaynak, M., Dolu, N., Güven, A., Pektaş, F., Özmen, S., Demirci, E., İzzetoğlu, M. Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features (2020) Biocybernetics and Biomedical Engineering, 40 (3), pp. 927-937. Cited 21 times. http://www.sciencedirect.com/science/journal/02085216 doi: 10.1016/j.bbe.2020.04.006spa
dcterms.bibliographicCitationKaisar, S. Developmental dyslexia detection using machine learning techniques: A survey (2020) ICT Express, 6 (3), pp. 181-184. Cited 18 times. https://www.journals.elsevier.com/ict-express/ doi: 10.1016/j.icte.2020.05.006spa
dcterms.bibliographicCitationJosephine, V.L., Helen, A., Nirmala, A.P., Alluri, V.L. Impact of Hidden Dense Layers in Convolutional Neural Network to enhance Performance of Classification Model (2021) IOP Conference Series: Materials Science and Engineering, 1131 (1). Cited 10 times. IOP Publishingspa
dcterms.bibliographicCitationVahid, A., Bluschke, A., Roessner, V., Stober, S., Beste, C. Deep learning based on event-related EEG differentiates children with ADHD from healthy controls (Open Access) (2019) Journal of Clinical Medicine, 8 (7), art. no. 1055. Cited 48 times. https://www.mdpi.com/2077-0383/8/7/1055/pdf doi: 10.3390/jcm8071055spa
dcterms.bibliographicCitationEkhlasi, A., Nasrabadi, A.M., Mohammadi, M. Classification of the children with ADHD and healthy children based on the directed phase transfer entropy of EEG signals (Open Access) (2021) Frontiers in Biomedical Technologies, 8 (2), pp. 115-122. Cited 11 times. https://fbt.tums.ac.ir/index.php/fbt/article/view/302 doi: 10.18502/fbt.v8i2.6515spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/STSIVA53688.2021.9592021
dc.subject.keywordsEvoked Potentials;spa
dc.subject.keywordsElectroencephalography;spa
dc.subject.keywordsApproximate Entropyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.