Mostrar el registro sencillo del ítem
Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs
dc.contributor.author | Cabarcas-Mena, Yina P. | |
dc.contributor.author | Marrugo, Andres G. | |
dc.contributor.author | Contreras-Ortiz, Sonia H. | |
dc.date.accessioned | 2023-07-21T16:25:40Z | |
dc.date.available | 2023-07-21T16:25:40Z | |
dc.date.issued | 2021 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12347 | |
dc.description.abstract | Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challenge with ADHD children. This work proposes a method for classification of ADHD and control cases from cognitive event-related potentials using recurrence plots and deep learning. A total of 44 children were included in this study (22 children with ADHD and 22 case controls). The signals were processed by a high-pass filter to eliminate DC components, wavelets transform with six decomposition levels, and synchronized averaging for each of the six channels (F3, AF3, F4, AF4, F7 and F8). Subsequently, the recurrence plot of each of the processed signals was obtained and used as inputs for two convolutional neural networks (CNN). The proposed models showed accuracies of 69.44% and 77,78%. © 2021 IEEE | spa |
dc.format.extent | 6 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) | spa |
dc.title | Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs | spa |
dcterms.bibliographicCitation | Vásquez, J., Cárdenas, E.M., Feria, M., Benjet, C., Palacios, L., De La Peñ, F. Guía clínica para el trastorno por déficit de atención e hiperactividad (2010) DF Guías Clínicas Para la Atención de Trastornos Mentales, Instituto Nacional de Psiquiatría Ramón de la Fuente. Cited 7 times. Berenzon S, Del Bosque J, Alfaro J, Medina-Mora ME. México | spa |
dcterms.bibliographicCitation | Lenartowicz, A., Loo, S.K. Use of EEG to Diagnose ADHD (2014) Current Psychiatry Reports, 16 (11), art. no. 498. Cited 154 times. http://www.springerlink.com/content/1523-3812/ doi: 10.1007/s11920-014-0498-0 | spa |
dcterms.bibliographicCitation | Mercado-Aguirre, I.M., Gutiérrez-Ruiz, K., Contreras-Ortiz, S.H. Acquisition and Analysis of Cognitive Evoked Potentials using an Emotiv Headset for ADHD Evaluation in Children (2019) 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings, art. no. 8730225. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8719845 ISBN: 978-172811491-0 doi: 10.1109/STSIVA.2019.8730225 | spa |
dcterms.bibliographicCitation | Mohammadi, M.R., Khaleghi, A., Nasrabadi, A.M., Rafieivand, S., Begol, M., Zarafshan, H. EEG classification of ADHD and normal children using non-linear features and neural network (2016) Biomedical Engineering Letters, 6 (2), pp. 66-73. Cited 110 times. http://www.springer.com/engineering/biomedical+eng/journal/13534 doi: 10.1007/s13534-016-0218-2 | spa |
dcterms.bibliographicCitation | Ghassemi, F., Hassan, M., Tehrani-Doost, M., Abootalebi, V. Using non-linear features of EEG for ADHD/normal participants' classification (2012) Procedia - Social and Behavioral Sciences, 32, pp. 148-152. Cited 34 times. http://www.sciencedirect.com/science/journal/18770428/1 doi: 10.1016/j.sbspro.2012.01.024 | spa |
dcterms.bibliographicCitation | Mercado-Aguirre, I.M., Gutierrez-Ruiz, K.P., Contreras-Ortiz, S.H. EEG feature selection for ADHD detection in children (2020) 16th International Symposium on Medical Information Processing and Analysis 11583 International Society for Optics and Photonics | spa |
dcterms.bibliographicCitation | Nima, H., Gavet, Y., Debayle, J. Classification of time-series images using deep convolutional neural networks (2017) Tenth International Conference on Machine Vision ICMV, p. 2018. Cited 2 times. 10696. International Society for Optics and Photonics | spa |
dcterms.bibliographicCitation | Zeng, M., Zhang, X., Zhao, C., Lu, X., Meng, Q. GRP-DNet: A gray recurrence plot-based densely connected convolutional network for classification of epileptiform EEG (2021) Journal of Neuroscience Methods, 347, art. no. 108953. Cited 16 times. www.elsevier.com/locate/jneumeth doi: 10.1016/j.jneumeth.2020.108953 | spa |
dcterms.bibliographicCitation | Eckmann, J.-P., Oliffson Kamphorst, O., Ruelle, D. Recurrence plots of dynamical systems (1987) EPL, 4 (9), pp. 973-977. Cited 2000 times. doi: 10.1209/0295-5075/4/9/004 | spa |
dcterms.bibliographicCitation | Roh, D., Shin, H. Recurrence plot and machine learning for signal quality assessment of photoplethysmogram in mobile environment (Open Access) (2021) Sensors, 21 (6), art. no. 2188, pp. 1-12. Cited 12 times. https://www.mdpi.com/1424-8220/21/6/2188/pdf doi: 10.3390/s21062188 | spa |
dcterms.bibliographicCitation | Webber Jr., C.L., Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies (Open Access) (1994) Journal of Applied Physiology, 76 (2), pp. 965-973. Cited 1158 times. https://www.physiology.org/journal/jappl doi: 10.1152/jappl.1994.76.2.965 | spa |
dcterms.bibliographicCitation | Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., Ang, P.C.A. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals (Open Access) (2011) International Journal of Neural Systems, 21 (3), pp. 199-211. Cited 277 times. doi: 10.1142/S0129065711002808 | spa |
dcterms.bibliographicCitation | Garcia-Ceja, E., Uddin, M.Z., Torresen, J. Classification of Recurrence Plots' Distance Matrices with a Convolutional Neural Network for Activity Recognition (Open Access) (2018) Procedia Computer Science, 130, pp. 157-163. Cited 46 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2018.04.025 | spa |
dcterms.bibliographicCitation | Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., (...), Chen, T. Recent advances in convolutional neural networks (2018) Pattern Recognition, 77, pp. 354-377. Cited 2608 times. www.elsevier.com/inca/publications/store/3/2/8/ doi: 10.1016/j.patcog.2017.10.013 | spa |
dcterms.bibliographicCitation | Krizhevsky, A., Sutskever, I., Hinton, G.E. ImageNet classification with deep convolutional neural networks (Open Access) (2012) Advances in Neural Information Processing Systems, 2, pp. 1097-1105. Cited 71780 times. ISBN: 978-162748003-1 | spa |
dcterms.bibliographicCitation | Chollet, F. (2015) Keras. Cited 7684 times. https://github.com/fchollet/keras | spa |
dcterms.bibliographicCitation | Kingma, D.P., Ba, J. Adam: A Method for Stochastic Optimization. Cited 51822 times. CoRR abs/1412.6980. arXiv 1412.6980 | spa |
dcterms.bibliographicCitation | Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting (Open Access) (2014) Journal of Machine Learning Research, 15, pp. 1929-1958. Cited 26055 times. http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf | spa |
dcterms.bibliographicCitation | Ying, X. An Overview of Overfitting and its Solutions (Open Access) (2019) Journal of Physics: Conference Series, 1168 (2), art. no. 022022. Cited 558 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1168/2/022022 | spa |
dcterms.bibliographicCitation | Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data (Open Access) (2002) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66 (2). Cited 798 times. doi: 10.1103/PhysRevE.66.026702 | spa |
dcterms.bibliographicCitation | Sultornsanee, S., Zeid, I., Kamarthi, S. Classification of electromyogram using recurrence quantification analysis (2011) Procedia Computer Science, 6, pp. 375-380. Cited 15 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2011.08.069 | spa |
dcterms.bibliographicCitation | Li, Y., Ma, S., Hu, Z., Chen, J., Su, G., Dou, W. Single trial EEG classification applied to a face recognition experiment using different feature extraction methods (2015) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-November, art. no. 7320064, pp. 7246-7249. Cited 3 times. ISBN: 978-142449271-8 doi: 10.1109/EMBC.2015.7320064 | spa |
dcterms.bibliographicCitation | Liu, G., Zhou, W., Geng, M. Automatic Seizure Detection Based on S-Transform and Deep Convolutional Neural Network (2020) International Journal of Neural Systems, 30 (4), art. no. 1950024. Cited 57 times. http://www.worldscinet.com/ijns/ijns.shtml doi: 10.1142/S0129065719500242 | spa |
dcterms.bibliographicCitation | Altınkaynak, M., Dolu, N., Güven, A., Pektaş, F., Özmen, S., Demirci, E., İzzetoğlu, M. Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features (2020) Biocybernetics and Biomedical Engineering, 40 (3), pp. 927-937. Cited 21 times. http://www.sciencedirect.com/science/journal/02085216 doi: 10.1016/j.bbe.2020.04.006 | spa |
dcterms.bibliographicCitation | Kaisar, S. Developmental dyslexia detection using machine learning techniques: A survey (2020) ICT Express, 6 (3), pp. 181-184. Cited 18 times. https://www.journals.elsevier.com/ict-express/ doi: 10.1016/j.icte.2020.05.006 | spa |
dcterms.bibliographicCitation | Josephine, V.L., Helen, A., Nirmala, A.P., Alluri, V.L. Impact of Hidden Dense Layers in Convolutional Neural Network to enhance Performance of Classification Model (2021) IOP Conference Series: Materials Science and Engineering, 1131 (1). Cited 10 times. IOP Publishing | spa |
dcterms.bibliographicCitation | Vahid, A., Bluschke, A., Roessner, V., Stober, S., Beste, C. Deep learning based on event-related EEG differentiates children with ADHD from healthy controls (Open Access) (2019) Journal of Clinical Medicine, 8 (7), art. no. 1055. Cited 48 times. https://www.mdpi.com/2077-0383/8/7/1055/pdf doi: 10.3390/jcm8071055 | spa |
dcterms.bibliographicCitation | Ekhlasi, A., Nasrabadi, A.M., Mohammadi, M. Classification of the children with ADHD and healthy children based on the directed phase transfer entropy of EEG signals (Open Access) (2021) Frontiers in Biomedical Technologies, 8 (2), pp. 115-122. Cited 11 times. https://fbt.tums.ac.ir/index.php/fbt/article/view/302 doi: 10.18502/fbt.v8i2.6515 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1109/STSIVA53688.2021.9592021 | |
dc.subject.keywords | Evoked Potentials; | spa |
dc.subject.keywords | Electroencephalography; | spa |
dc.subject.keywords | Approximate Entropy | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.