Mostrar el registro sencillo del ítem

dc.contributor.authorMedina-Quesada, Ángeles
dc.contributor.authorGil-González, Walter
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorMolina-Cabrera, Alexander
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2023-07-21T16:25:23Z
dc.date.available2023-07-21T16:25:23Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationMedina-Quesada, Á., Gil-González, W., Montoya, O. D., Molina-Cabrera, A., & Hernández, J. C. (2022). Control of photovoltaic plants interconnected via VSC to improve power oscillations in a power system. Electronics, 11(11), 1744.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12345
dc.description.abstractThis paper presents an integrated methodology applied to photovoltaic (PV) plants for improving the dynamic performance of electric power systems. The proposed methodology is based on primary frequency control, which adds an ancillary signal to the voltage reference of the DC-link for the voltage source converter (VSC) in order to reduce power oscillations. This ancillary signal is computed by relating the energy stored in the VSC of the DC-link and the energy stored in the synchronous machine’s shaft. In addition, the methodology considers the operating limits of the VSC, which prioritizes active power over reactive power. Furthermore, the VSC control is assessed with interconnection and damping assignment passivity-based control (IDA-PBC), as well as compared to conventional PI control. IDA-PBC is employed to design a Lyapunov asymptotically stable controller using the Hamiltonian structural properties of the open-loop model of the VSC. A 12-bus test system that considers PV plants is employed to compare the proposed IDA-PBC control with a classical proportional-integral control approach. The impact of the proposed methodology is analyzed in four scenarios with different PV penetration levels (10%, 30%, 50%, and 80%) and four large disturbances in the test power system. In addition, a decrease in the inertia of the synchronous machines from 100 to 25% is analyzed. The time-domain simulation results show that the frequency oscillations are reduced by 16.8%, 38.43%, 37.53%, and 76.94% in comparison with the case where the proposed methodology was not implemented. The simulations were conducted using the SimPowerSystems toolbox of the MATLAB/Simulink software. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.format.extent19 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics (Switzerland)spa
dc.titleControl of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power Systemspa
dcterms.bibliographicCitationGil-Gonzalez, W.J., Garces, A., Fosso, O.B., Escobar-Mejia, A. Passivity-Based Control of Power Systems Considering Hydro-Turbine with Surge Tank (2020) IEEE Transactions on Power Systems, 35 (3), art. no. 8877767, pp. 2002-2011. Cited 29 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2019.2948360spa
dcterms.bibliographicCitationRuiz, X. Role of the European Union in the climate change negotiations (2015) UNISCI Discussion Papers, 2015 (39), pp. 105-126. Cited 3 times. http://www.ucm.es/data/cont/media/www/pag-74789/UNISCIDP39-4XIRA.pdfspa
dcterms.bibliographicCitationKabir, E., Kumar, P., Kumar, S., Adelodun, A.A., Kim, K.-H. Solar energy: Potential and future prospects (2018) Renewable and Sustainable Energy Reviews, Part 1 82, pp. 894-900. Cited 1229 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.09.094spa
dcterms.bibliographicCitationJäger-Waldau, A., Kougias, I., Taylor, N., Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030 (2020) Renewable and Sustainable Energy Reviews, 126, art. no. 109836. Cited 88 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.109836spa
dcterms.bibliographicCitationMilano, F., Manjavacas, A.O. (2020) Frequency Variations in Power Systems: Modeling, State Estimation, and Control. Cited 16 times. John Wiley & Sons: Hoboken, NJ, USAspa
dcterms.bibliographicCitationEftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J. Impact of increased penetration of photovoltaic generation on power systems (2013) IEEE Transactions on Power Systems, 28 (2), pp. 893-901. Cited 641 times. doi: 10.1109/TPWRS.2012.2216294spa
dcterms.bibliographicCitationEftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J. Small signal stability assessment of power systems with increased penetration of photovoltaic generation: A case study (2013) IEEE Transactions on Sustainable Energy, 4 (4), art. no. 6513320, pp. 960-967. Cited 196 times. doi: 10.1109/TSTE.2013.2259602spa
dcterms.bibliographicCitationHarnefors, L., Yepes, A.G., Vidal, A., Doval-Gandoy, J. Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability (2015) IEEE Transactions on Industrial Electronics, 62 (2), art. no. 6850036, pp. 702-710. Cited 305 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2014.2336632spa
dcterms.bibliographicCitationGolkhandan, R.K., Aghaebrahimi, M.R., Farshad, M. Control strategies for enhancing frequency stability by DFIGs in a power system with high percentage of wind power penetration (2017) Applied Sciences (Switzerland), 7 (11), art. no. 1140. Cited 13 times. http://www.mdpi.com/2076-3417/7/11/1140/pdf doi: 10.3390/app7111140spa
dcterms.bibliographicCitationDelille, G., François, B., Malarange, G. Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia (2012) IEEE Transactions on Sustainable Energy, 3 (4), pp. 931-939. Cited 605 times. doi: 10.1109/TSTE.2012.2205025spa
dcterms.bibliographicCitationTamimi, B., Canizares, C., Bhattacharya, K. System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada (2013) IEEE Transactions on Sustainable Energy, 4 (3), art. no. 6463473, pp. 680-688. Cited 235 times. doi: 10.1109/TSTE.2012.2235151spa
dcterms.bibliographicCitationWang, Y., Silva, V., Lopez-Botet-zulueta, M. Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system (2016) IET Renewable Power Generation, 10 (1), pp. 10-16. Cited 98 times. http://www.theiet.org/ doi: 10.1049/iet-rpg.2015.0141spa
dcterms.bibliographicCitationEdrah, M., Lo, K.L., Anaya-Lara, O. Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems (2015) IEEE Transactions on Sustainable Energy, 6 (3), art. no. 7079521, pp. 759-766. Cited 192 times. doi: 10.1109/TSTE.2015.2412176spa
dcterms.bibliographicCitationGevorgian, V., Zhang, Y., Ela, E. Investigating the Impacts of Wind Generation Participation in Interconnection Frequency Response (2015) IEEE Transactions on Sustainable Energy, 6 (3), art. no. 6888510, pp. 1004-1012. Cited 187 times. doi: 10.1109/TSTE.2014.2343836spa
dcterms.bibliographicCitationKorai, A.W., Erlich, I. Frequency dependent voltage control by der units to improve power system frequency stability (2015) 2015 IEEE Eindhoven PowerTech, PowerTech 2015, art. no. 7232349. Cited 7 times. ISBN: 978-147997693-5 doi: 10.1109/PTC.2015.7232349spa
dcterms.bibliographicCitationSilva-Saravia, H., Pulgar-Painemal, H., Tolbert, L.M., Schoenwald, D.A., Ju, W. Enabling utility-scale solar PV plants for electromechanical oscillation damping (2021) IEEE Transactions on Sustainable Energy, 12 (1), art. no. 9066873, pp. 138-147. Cited 24 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165391 doi: 10.1109/TSTE.2020.2985999spa
dcterms.bibliographicCitationJamsheed, F., Iqbal, S.J. An Adaptive Neural Network-Based Controller to Stabilize Power Oscillations in Wind-integrated Power Systems (Open Access) (2022) IFAC-PapersOnLine, 55 (1), pp. 740-745. Cited 3 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2022.04.121spa
dcterms.bibliographicCitationZenelis, I., Wang, X. A model-free sparse wide-area damping controller for inter-area oscillations (Open Access) (2022) International Journal of Electrical Power and Energy Systems, 136, art. no. 107609. Cited 7 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107609spa
dcterms.bibliographicCitationAlsakati, A.A., Vaithilingam, C.A., Naidu, K., Rajendran, G., Alnasseir, J., Jagadeeshwaran, A. Particle Swarm Optimization for Tuning Power System Stabilizer towards Transient Stability Improvement in Power System Network (2021) 3rd IEEE International Conference on Artificial Intelligence in Engineering and Technology, IICAIET 2021. Cited 6 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9573499 ISBN: 978-166542899-6 doi: 10.1109/IICAIET51634.2021.9573534spa
dcterms.bibliographicCitationEladany, M.M., Eldesouky, A.A., Sallam, A.A. Power System Transient Stability: An Algorithm for Assessment and Enhancement Based on Catastrophe Theory and FACTS Devices (Open Access) (2018) IEEE Access, 6, pp. 26424-26437. Cited 38 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2834906spa
dcterms.bibliographicCitationPenchalaiah, G., Ramya, R. Investigation on Power System Stability Improvement Using Facts Controllers (Open Access) (2022) Lecture Notes in Electrical Engineering, 795, pp. 499-506. http://www.springer.com/series/7818 ISBN: 978-981164942-4 doi: 10.1007/978-981-16-4943-1_46spa
dcterms.bibliographicCitationNaeem, A., Atif, A. Transient Stability of Power System by Static VAR Compensator (SVC) and Power System Stabilizers (PSS) using MATLAB/Simulink (2018) SSRG Int. J. Electr. Electron. Eng. (SSRG-IJEEE), 5, pp. 16-20. Cited 2 times.spa
dcterms.bibliographicCitationHe, P., Fang, Q., Jin, H., Ji, Y., Gong, Z., Dong, J. Coordinated design of PSS and STATCOM-POD based on the GA-PSO algorithm to improve the stability of wind-PV-thermal-bundled power system (2022) International Journal of Electrical Power and Energy Systems, 141, art. no. 108208. Cited 7 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108208spa
dcterms.bibliographicCitationSuul, J.A., D'Arco, S., Guidi, G. Virtual Synchronous Machine-Based Control of a Single-Phase Bi-Directional Battery Charger for Providing Vehicle-to-Grid Services (Open Access) (2016) IEEE Transactions on Industry Applications, 52 (4), art. no. 7447747, pp. 3234-3244. Cited 136 times. doi: 10.1109/TIA.2016.2550588spa
dcterms.bibliographicCitationMo, O., Darco, S., Suul, J.A. Evaluation of Virtual Synchronous Machines with Dynamic or Quasi-Stationary Machine Models (2017) IEEE Transactions on Industrial Electronics, 64 (7), art. no. 7781612, pp. 5952-5962. Cited 148 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2016.2638810spa
dcterms.bibliographicCitationHou, X., Sun, Y., Zhang, X., Lu, J., Wang, P., Guerrero, J.M. Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia (2020) IEEE Transactions on Power Electronics, 35 (2), art. no. 8741094, pp. 1589-1602. Cited 128 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2019.2923734spa
dcterms.bibliographicCitationRemon, D., Cantarellas, A.M., Mauricio, J.M., Rodriguez, P. Power system stability analysis under increasing penetration of photovoltaic power plants with synchronous power controllers (Open Access) (2017) IET Renewable Power Generation, 11 (6), pp. 733-741. Cited 107 times. http://www.theiet.org/ doi: 10.1049/iet-rpg.2016.0904spa
dcterms.bibliographicCitationRemon, D., Cañizares, C.A., Rodriguez, P. Impact of 100-MW-scale PV plants with synchronous power controllers on power system stability in northern Chile (Open Access) (2017) IET Generation, Transmission and Distribution, 11 (11), pp. 2958-2964. Cited 39 times. www.ietdl.org/IET-GTD doi: 10.1049/iet-gtd.2017.0203spa
dcterms.bibliographicCitationMarkovic, U., Chu, Z., Aristidou, P., Hug, G. LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration (Open Access) (2019) IEEE Transactions on Sustainable Energy, 10 (3), art. no. 8579100, pp. 1501-1512. Cited 95 times. doi: 10.1109/TSTE.2018.2887147spa
dcterms.bibliographicCitationMarkovic, U., Stanojev, O., Aristidou, P., Vrettos, E., Callaway, D., Hug, G. Understanding Small-Signal Stability of Low-Inertia Systems (Open Access) (2021) IEEE Transactions on Power Systems, 36 (5), art. no. 9361257, pp. 3997-4017. Cited 84 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2021.3061434spa
dcterms.bibliographicCitationMilano, F., Manjavacas, Á.O. Converter-interfaced energy storage systems: Context, modelling and dynamic analysis (Open Access) (2019) Converter-Interfaced Energy Storage Systems: Context, Modelling and Dynamic Analysis, pp. 1-368. Cited 17 times. https://www.cambridge.org/core/books/converterinterfaced-energy-storage-systems/46097C9A940D7C7D5128E46D37FF2F0F#fndtn-information ISBN: 978-110836326-6; 978-110842106-5 doi: 10.1017/9781108363266spa
dcterms.bibliographicCitationGil–-González, W., Montoya, O.D., Garces, A. Direct power control of electrical energy storage systems: A passivity-based PI approach (2019) Electric Power Systems Research, 175, art. no. 105885. Cited 21 times. doi: 10.1016/j.epsr.2019.105885spa
dcterms.bibliographicCitationMachowski, J., Lubosny, Z., Bialek, J.W., Bumby, J.R. (2020) Power System Dynamics: Stability and Control. Cited 1704 times. 3rd ed.; John Wily & Sons: Hoboken, NJ, USAspa
dcterms.bibliographicCitationOrtega, A., Milano, F. Generalized model of vsc-based energy storage systems for transient stability analysis (2016) IEEE Transactions on Power Systems, 31 (5), art. no. 7332987, pp. 3369-3380. Cited 138 times. doi: 10.1109/TPWRS.2015.2496217spa
dcterms.bibliographicCitationBhatt, G., Affljulla, S. Analysis of large scale PV penetration impact on IEEE 39-Bus power system (2017) 58th Annual International Scientific Confererence on Power and Electrical Engineering of Riga Technical University, RTUCON 2017 - Proceedings, 2017-November, pp. 1-6. Cited 20 times. ISBN: 978-153863846-0 doi: 10.1109/RTUCON.2017.8124840spa
dcterms.bibliographicCitationMontoya, O.D. (2019) Passivity-Based Analysis and Control of AC Microgrids: Integration, Operation and Control of Energy Storage Systems Ph.D. Thesis, Universidad Tecnológica de Pereira, Pereira, Colombiaspa
dcterms.bibliographicCitationSerra, F.M., De Angelo, C.H. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (Open Access) (2017) Electric Power Systems Research, 142, pp. 12-19. Cited 35 times. doi: 10.1016/j.epsr.2016.08.041spa
dcterms.bibliographicCitationGupta, Y., Chatterjee, K., Doolla, S. Controller design, analysis and testing of a three-phase VSI using IDA-PBC approach (Open Access) (2020) IET Power Electronics, 13 (2), pp. 346-355. Cited 6 times. http://digital-library.theiet.org/content/journals/iet-pel doi: 10.1049/iet-pel.2019.0553spa
dcterms.bibliographicCitationOrtega, R., Van der Schaft, A., Maschke, B., Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (Open Access) (2002) Automatica, 38 (4), pp. 585-596. Cited 1304 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/S0005-1098(01)00278-3spa
dcterms.bibliographicCitationGil-González, W., Serra, F.M., Montoya, O.D., Ramírez, C.A., Orozco-Henao, C. Direct power compensation in AC distribution networks with SCES systems via PI-PBC approach (2020) Symmetry, 12 (4), art. no. 666. Cited 8 times. https://www.mdpi.com/2073-8994/12/4/666 doi: 10.3390/SYM12040666spa
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119. Cited 65 times. www.elsevier.com/inca/publications/store/1/2/3/ doi: 10.1016/j.conengprac.2015.07.002spa
dcterms.bibliographicCitationPerko, L. (2013) Differential Equations and Dynamical Systems, 7. Cited 3061 times. Springer Science & Business Media: Berlin/Heidelberg, Germanyspa
dcterms.bibliographicCitationGil-González, W. (2019) Passivity–Based Control and Stability Analysis for Hydro–Solar Power Systems. Cited 4 times. Ph.D. Thesis, Universidad Tecnológica de Pereira, Pereira, Colombiaspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/electronics11111744
dc.subject.keywordsInertia;spa
dc.subject.keywordsAsynchronous Generators;spa
dc.subject.keywordsWind Farmsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.