Mostrar el registro sencillo del ítem

dc.contributor.authorSierra, Juan S.
dc.contributor.authorPineda, Jesus
dc.contributor.authorRueda, Daniela
dc.contributor.authorTello, Alejandro
dc.contributor.authorPrada, Angélica M.
dc.contributor.authorGalvis, Virgilio
dc.contributor.authorVolpe, Giovanni
dc.contributor.authorMillan, Maria S.
dc.contributor.authorRomero, Lenny A.
dc.contributor.authorMarrugo, Andres G.
dc.date.accessioned2023-07-21T16:24:39Z
dc.date.available2023-07-21T16:24:39Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationSierra, J. S., Pineda, J., Rueda, D., Tello, A., Prada, A. M., Galvis, V., ... & Marrugo, A. G. (2023). Corneal endothelium assessment in specular microscopy images with Fuchs’ dystrophy via deep regression of signed distance maps. Biomedical optics express, 14(1), 335-351.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12342
dc.description.abstractSpecular microscopy assessment of the human corneal endothelium (CE) in Fuchs’ dystrophy is challenging due to the presence of dark image regions called guttae. This paper proposes a UNet-based segmentation approach that requires minimal post-processing and achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs’ dystrophy. We cast the segmentation problem as a regression task of the cell and gutta signed distance maps instead of a pixel-level classification task as typically done with UNets. Compared to the conventional UNet classification approach, the distance-map regression approach converges faster in clinically relevant parameters. It also produces morphometric parameters that agree with the manually-segmented ground-truth data, namely the average cell density difference of -41.9 cells/mm2 (95% confidence interval (CI) [-306.2, 222.5]) and the average difference of mean cell area of 14.8 µm2 (95% CI [-41.9, 71.5]). These results suggest a promising alternative for CE assessment. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.spa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceBiomedical Optics Expressspa
dc.titleCorneal endothelium assessment in specular microscopy images with Fuchs’ dystrophy via deep regression of signed distance mapsspa
dcterms.bibliographicCitationGiasson, C.J., Graham, A., Blouin, J.-F., Solomon, L., Gresset, J., Melillo, M., Polse, K.A. Morphometry of cells and guttae in subjects with normal or guttate endothelium with a contour detection algorithm (2005) Eye and Contact Lens, 31 (4), pp. 158-165. Cited 11 times. doi: 10.1097/01.ICL.0000165286.05080.23spa
dcterms.bibliographicCitationSierra, J.S., Pineda, J., Viteri, E., Rueda, D., Tibaduiza, B., Berrospi, R.D., Tello, A., (...), Marrugo, A.G. Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks (2020) Proceedings of SPIE - The International Society for Optical Engineering, 11511, art. no. 115110H. Cited 6 times. http://spie.org/x1848.xml ISBN: 978-151063828-0 doi: 10.1117/12.2569258spa
dcterms.bibliographicCitationSelig, B., Vermeer, K.A., Rieger, B., Hillenaar, T., Luengo Hendriks, C.L. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy (2015) BMC Medical Imaging, 15 (1), art. no. 13. Cited 41 times. http://www.biomedcentral.com/bmcmedimaging/ doi: 10.1186/s12880-015-0054-3spa
dcterms.bibliographicCitationOng Tone, S., Jurkunas, U. Imaging the Corneal Endothelium in Fuchs Corneal Endothelial Dystrophy (2019) Seminars in Ophthalmology, 34 (4), pp. 340-346. Cited 16 times. http://www.tandfonline.com/loi/isio20 doi: 10.1080/08820538.2019.1632355spa
dcterms.bibliographicCitationYasukura, Y., Oie, Y., Kawasaki, R., Maeda, N., Jhanji, V., Nishida, K. New severity grading system for Fuchs endothelial corneal dystrophy using anterior segment optical coherence tomography (2021) Acta Ophthalmologica, 99 (6), pp. e914-e921. Cited 5 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1755-3768 doi: 10.1111/aos.14690spa
dcterms.bibliographicCitationLaing, R.A., Sandstrom, M.M., Leibowitz, H.M. Clinical specular microscopy. I. Optical principles (1979) Archives of Ophthalmology, 97 (9), pp. 1714-1719. Cited 50 times. doi: 10.1001/archopht.1979.01020020282021spa
dcterms.bibliographicCitationSrinivasan, M. Chapter-22 specular microscopy (2005) Modern Ophthalmology, pp. 147-153. (Jaypee Brothers Medical Publishers (P) Ltd)spa
dcterms.bibliographicCitationNurzynska, K. Deep learning as a tool for automatic segmentation of corneal endothelium images (2018) Symmetry, 10 (3), art. no. 60. Cited 24 times. https://res.mdpi.com/symmetry/symmetry-10-00060/article_deploy/symmetry-10-00060.pdf?filename=&attachment=1 doi: 10.3390/SYM10030060spa
dcterms.bibliographicCitationFabijańska, A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network (2018) Artificial Intelligence in Medicine, 88, pp. 1-13. Cited 66 times. www.elsevier.com/locate/artmed doi: 10.1016/j.artmed.2018.04.004spa
dcterms.bibliographicCitationScarpa, F., Ruggeri, A. Automated morphometric description of human corneal endothelium from in-vivo specular and confocal microscopy (2016) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016-October, art. no. 7590944, pp. 1296-1299. Cited 13 times. ISBN: 978-145770220-4 doi: 10.1109/EMBC.2016.7590944spa
dcterms.bibliographicCitationScarpa, F., Ruggeri, A. Development of a reliable automated algorithm for the morphometric analysis of human corneal endothelium (2016) Cornea, 35 (9), pp. 1222-1228. Cited 25 times. http://journals.lww.com/corneajrnl/pages/default.aspx doi: 10.1097/ICO.0000000000000908spa
dcterms.bibliographicCitationSanchez-Marin, F.J. Automatic segmentation of contours of corneal cells (1999) Computers in Biology and Medicine, 29 (4), pp. 243-258. Cited 35 times. doi: 10.1016/S0010-4825(99)00010-4spa
dcterms.bibliographicCitationAl-Fahdawi, S., Qahwaji, R., Al-Waisy, A.S., Ipson, S., Ferdousi, M., Malik, R.A., Brahma, A. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology (2018) Computer Methods and Programs in Biomedicine, 160, pp. 11-23. Cited 27 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2018.03.015spa
dcterms.bibliographicCitationPiorkowski, A., Nurzynska, K., Gronkowska-Serafin, J., Selig, B., Boldak, C., Reska, D. Influence of applied corneal endothelium image segmentation techniques on the clinical parameters (2017) Computerized Medical Imaging and Graphics, 55, pp. 13-27. Cited 27 times. www.elsevier.com/locate/compmedimag doi: 10.1016/j.compmedimag.2016.07.010spa
dcterms.bibliographicCitationRuggeri, A., Grisan, E., Jaroszewski, J. A new system for the automatic estimation of endothelial cell density in donor corneas (2005) British Journal of Ophthalmology, 89 (3), pp. 306-311. Cited 40 times. doi: 10.1136/bjo.2004.051722spa
dcterms.bibliographicCitationVicar, T., Chmelik, J., Jakubicek, R., Chmelikova, L., Gumulec, J., Balvan, J., Provaznik, I., (...), Kolar, R. Self-supervised pretraining for transferable quantitative phase image cell segmentation (Open Access) (2021) Biomedical Optics Express, 12 (10), pp. 6514-6528. Cited 2 times. https://www.osapublishing.org/abstract.cfm?uri=boe-12-10-6514 doi: 10.1364/BOE.433212spa
dcterms.bibliographicCitationDaniel, M.C., Atzrodt, L., Bucher, F., Wacker, K., Böhringer, S., Reinhard, T., Böhringer, D. Automated segmentation of the corneal endothelium in a large set of ‘real-world’ specular microscopy images using the U-Net architecture (Open Access) (2019) Scientific Reports, 9 (1), art. no. 4752. Cited 29 times. www.nature.com/srep/index.html doi: 10.1038/s41598-019-41034-2spa
dcterms.bibliographicCitationRonneberger, O., Fischer, P., Brox, T. U-net: Convolutional networks for biomedical image segmentation (2015) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, pp. 234-241. Cited 37884 times. http://springerlink.com/content/0302-9743/copyright/2005/ ISBN: 978-331924573-7 doi: 10.1007/978-3-319-24574-4_28spa
dcterms.bibliographicCitationJoseph, N., Kolluru, C., Benetz, B.A.M., Menegay, H.J., Lass, J.H., Wilson, D.L. Quantitative and qualitative evaluation of deep learning automatic segmentations of corneal endothelial cell images of reduced image quality obtained following cornea transplant (Open Access) (2020) Journal of Medical Imaging, 7 (1), art. no. 014503. Cited 18 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.7.1.014503spa
dcterms.bibliographicCitationVigueras-Guillén, J. P., Sari, B., Goes, S. F., Lemij, H. G., van Rooij, J., Vermeer, K. A., van Vliet, L. J. Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation (2019) BMC Biomed. Eng, 1, p. 4. Cited 39 times.spa
dcterms.bibliographicCitationVigueras-Guillén, J.P., van Rooij, J., Engel, A., Lemij, H.G., van Vliet, L.J., Vermeer, K.A. Deep learning for assessing the corneal endothelium from specular microscopy images up to 1 year after ultrathin-dsaek surgery (2020) Translational Vision Science and Technology, 9 (2), art. no. 49, pp. 1-12. Cited 15 times. https://tvst.arvojournals.org/article.aspx?articleid=2770688 doi: 10.1167/tvst.9.2.49spa
dcterms.bibliographicCitationVigueras-Guillén, J.P., Lemij, H.G., Van Rooij, J., Vermeer, K.A., Van Vliet, L.J. Automatic detection of the region of interest in corneal endothelium images using dense convolutional neural networks (2019) Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10949, art. no. 1094931. Cited 6 times. http://spie.org/x1848.xml ISBN: 978-151062545-7 doi: 10.1117/12.2512641spa
dcterms.bibliographicCitationVigueras-Guillen, J.P., Van Rooij, J., Lemij, H.G., Vermeer, K.A., Van Vliet, L.J. Convolutional neural network-based regression for biomarker estimation in corneal endothelium microscopy images (Open Access) (2019) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, art. no. 8857201, pp. 876-881. Cited 8 times. ISBN: 978-153861311-5 doi: 10.1109/EMBC.2019.8857201spa
dcterms.bibliographicCitationVigueras-Guillén, J.P., van Rooij, J., van Dooren, B.T.H., Lemij, H.G., Islamaj, E., van Vliet, L.J., Vermeer, K.A. DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae (Open Access) (2022) Scientific Reports, 12 (1), art. no. 14035. Cited 3 times. www.nature.com/srep/index.html doi: 10.1038/s41598-022-18180-1spa
dcterms.bibliographicCitationAiello, F., Gallo Afflitto, G., Ceccarelli, F., Cesareo, M., Nucci, C. Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis (2022) Journal of Ophthalmology, 2022, art. no. 3091695. Cited 9 times. http://www.hindawi.com/journals/jop/ doi: 10.1155/2022/3091695spa
dcterms.bibliographicCitationFeizi, S. Corneal endothelial cell dysfunction: etiologies and management (2018) Therapeutic Advances in Ophthalmology, 10, p. 251584141881580. Cited 71 times.spa
dcterms.bibliographicCitationEghrari, A.O., Riazuddin, S.A., Gottsch, J.D. Fuchs Corneal Dystrophy (Open Access) (2015) Progress in Molecular Biology and Translational Science, 134, pp. 79-97. Cited 57 times. http://www.elsevier.com/books/book-series/progress-in-molecular-biology-and-translational-science# ISBN: 978-012801059-4 doi: 10.1016/bs.pmbts.2015.04.005spa
dcterms.bibliographicCitationLaing, R.A., Leibowitz, H.M., Oak, S.S., Chang, R., Berrospi, A.R., Theodore, J. Endothelial Mosaic in Fuchs' Dystrophy: A Qualitative Evaluation With the Specular Microscope (Open Access) (1981) Archives of Ophthalmology, 99 (1), pp. 80-83. Cited 53 times. doi: 10.1001/archopht.1981.03930010082007spa
dcterms.bibliographicCitationChiou, A.G.-Y., Kaufman, S.C., Beuerman, R.W., Ohta, T., Soliman, H., Kaufman, H.E. Confocal microscopy in cornea guttata and Fuchs' endothelial dystrophy (Open Access) (1999) British Journal of Ophthalmology, 83 (2), pp. 185-189. Cited 80 times. http://bjo.bmj.com/ doi: 10.1136/bjo.83.2.185spa
dcterms.bibliographicCitationHogan, M.J., Wood, I., Fine, M. Fuchs' endothelial dystrophy of the cornea. 29th Sanford Gifford Memorial Lecture (1974) American Journal of Ophthalmology, 78 (3), pp. 363-383. Cited 84 times. doi: 10.1016/0002-9394(74)90224-4spa
dcterms.bibliographicCitationIwamoto, T., DeVoe, A.G. Electron microscopic studies on Fuchs'combined dystrophy. I. Posterior portion of the cornea. (Open Access) (1971) Investigative ophthalmology, 10 (1), pp. 9-28. Cited 106 times.spa
dcterms.bibliographicCitationOng Tone, S., Kocaba, V., Böhm, M., Wylegala, A., White, T.L., Jurkunas, U.V. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis (Open Access) (2021) Progress in Retinal and Eye Research, 80, art. no. 100863. Cited 50 times. www.elsevier.com/locate/preteyeres doi: 10.1016/j.preteyeres.2020.100863spa
dcterms.bibliographicCitationHe, S., Minn, K.T., Solnica-Krezel, L., Anastasio, M.A., Li, H. Deeply-supervised density regression for automatic cell counting in microscopy images (Open Access) (2021) Medical Image Analysis, 68, art. no. 101892. Cited 24 times. http://www.elsevier.com/inca/publications/store/6/2/0/9/8/3/index.htt doi: 10.1016/j.media.2020.101892spa
dcterms.bibliographicCitationSierra, J.S., Pineda, J., Viteri, E., Tello, A., Millán, M.S., Galvis, V., Romero, L.A., (...), Marrugo, A.G. Generating density maps for convolutional neural network-based cell counting in specular microscopy images (Open Access) (2020) Journal of Physics: Conference Series, 1547 (1), art. no. 012019. Cited 6 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1547/1/012019spa
dcterms.bibliographicCitationLundh, F. (1999) An introduction to tkinter. Cited 65 times. www.pythonware.com/library/tkinter/introduction/index.htmspa
dcterms.bibliographicCitationGrauer, J., Schmidt, F., Pineda, J., Midtvedt, B., Löwen, H., Volpe, G., Liebchen, B. Active droploids (Open Access) (2021) Nature Communications, 12 (1), art. no. 6005. Cited 7 times. http://www.nature.com/ncomms/index.html doi: 10.1038/s41467-021-26319-3spa
dcterms.bibliographicCitationNaylor, P., Laé, M., Reyal, F., Walter, T. Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map (Open Access) (2019) IEEE Transactions on Medical Imaging, 38 (2), art. no. 8438559, pp. 448-459. Cited 281 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42 doi: 10.1109/TMI.2018.2865709spa
dcterms.bibliographicCitationUlyanov, D., Vedaldi, A., Lempitsky, V. (2016) Instance normalization: The missing ingredient for fast stylizationmap. Cited 1805 times. arXiv, arXiv:1607.08022spa
dcterms.bibliographicCitationMaas, A. L., Hannun, A. Y., Ng, A. Y. Rectifier nonlinearities improve neural network acoustic models (2013) International conference on machine learning, 30. Cited 4516 times.spa
dcterms.bibliographicCitationXu, B., Wang, N., Chen, T., Li, M. (2015) Empirical evaluation of rectified activations in convolutional network. Cited 1522 times. arXiv, arXiv:1505.00853spa
dcterms.bibliographicCitationHe, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 108313 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90spa
dcterms.bibliographicCitationHelgadottir, S., Midtvedt, B., Pineda, J., Sabirsh, A., Adiels, C. B., Romeo, S., Midtvedt, D., (...), Volpe, G. Extracting quantitative biological information from bright-field cell images using deep learning (2021) Biophysics Rev, 2 (3), p. 031401. Cited 7 times.spa
dcterms.bibliographicCitationMidtvedt, B., Helgadottir, S., Argun, A., Pineda, J., Midtvedt, D., Volpe, G. Quantitative digital microscopy with deep learning (Open Access) (2021) Applied Physics Reviews, 8 (1), art. no. 011310. Cited 35 times. http://scitation.aip.org/content/aip/journal/apr2/browse doi: 10.1063/5.0034891spa
dcterms.bibliographicCitationHelgadottir, S., Argun, A., Volpe, G. Digital video microscopy enhanced by deep learning (Open Access) (2019) Optica, 6 (4), pp. 506-513. Cited 42 times. https://www.osapublishing.org/optica/viewmedia.cfm?uri=optica-6-4-506&seq=0 doi: 10.1364/OPTICA.6.000506spa
dcterms.bibliographicCitationKingma, D. P., Ba, J. (2014) Adam: A method for stochastic optimization. Cited 51822 times. arXiv, arXiv:1412.6980spa
dcterms.bibliographicCitationRoszkowska, A.M., Colosi, P., D'Angelo, P., Ferreri, G. Age-related modifications of the corneal endothelium in adults (2004) International Ophthalmology, 25 (3), pp. 163-166. Cited 34 times. www.wkap.nl/journalhome.htm/0165-5701 doi: 10.1007/s10792-004-1957-0spa
dcterms.bibliographicCitationValdez-García, J.E., Ortiz-Morales, G., Morales-Mancillas, N., Domenehickman, J.L., Hernández-Camarena, J., Loya-García, D., Zavala, J., (...), Rodriguez-García, A. Age-related Changes of the Corneal Endothelium in the Hispanic Elderly Population (Open Access) (2022) Open Ophthalmology Journal, 16 (1), art. no. e187436412204140. Cited 2 times. https://www.benthamopen.com/TOOPHTJ/ doi: 10.2174/18743641-v16-e2204140spa
dcterms.bibliographicCitationKudva, A., Lasrado, A., Hegde, S., Kadri, R., Devika, P., Shetty, A. Corneal endothelial cell changes in diabetics versus age group matched nondiabetics after manual small incision cataract surgery (Open Access) (2020) Indian Journal of Ophthalmology, 68 (1), pp. 72-76. Cited 10 times. http://www.ijo.in/ doi: 10.4103/ijo.IJO_406_19spa
dcterms.bibliographicCitationShilpashree, P.S., Suresh, K.V., Sudhir, R.R., Srinivas, S.P. Automated Image Segmentation of the Corneal Endothelium in Patients With Fuchs Dystrophy (Open Access) (2021) Translational Vision Science and Technology, 10 (13), art. no. 27. Cited 6 times. https://tvst.arvojournals.org/ doi: 10.1167/tvst.10.13.27spa
dcterms.bibliographicCitationAhmed, I., Balestrieri, E., Carni, D.L., Lamonaca, F. Comparison of U -NET backbones for morphometric measurements of white blood cell (Open Access) (2022) 2022 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2022 - Conference Proceedings http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9855895 ISBN: 978-166548299-8 doi: 10.1109/MeMeA54994.2022.9856479spa
dcterms.bibliographicCitationYeghiazaryan, V., Voiculescu, I. Family of boundary overlap metrics for the evaluation of medical image segmentation (Open Access) (2018) Journal of Medical Imaging, 5 (1), art. no. 015006. Cited 88 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.5.1.015006spa
dcterms.bibliographicCitationSierra, J., Pineda, J., Volpe, G., Romero, L. A., Marrugo, A. G. Code for corneal endothelium assessment in specular microscopy images with Fuchs’ dystrophy via deep regression of signed distance maps (2022) GitHub https://doi.org/10.5281/zenodo.7378507spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1364/BOE.477495
dc.subject.keywordsCorneal Endothelium;spa
dc.subject.keywordsHexagonal Cells;spa
dc.subject.keywordsCapillary Endothelial Cellspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.