Mostrar el registro sencillo del ítem
Counting integers representable as images of polynomials modulo n
dc.contributor.author | Arias, Fabián | |
dc.contributor.author | Borja, Jerson | |
dc.contributor.author | Rubio, Luis | |
dc.date.accessioned | 2023-07-21T16:24:19Z | |
dc.date.available | 2023-07-21T16:24:19Z | |
dc.date.issued | 2019 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Arias, F., Borja, J., & Rubio, L. (2018). Counting integers representable as images of polynomials modulo $ n$. arXiv preprint arXiv:1812.11599. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12340 | |
dc.description.abstract | Given a polynomial f(x1,x2,…,xt) in t variables with integer coefficients and a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the polynomialcongruencef(x1,x2,…,xt) ≡ a(modn)issolvable. Wedescribeamethod that allows us to determine the function α associated with polynomials of the form c1xk1+c2xk2+···+ctxkt. Then, we apply this method to polynomials that involve sums and differences of squares, mainly to the polynomials x2 +y2, x2 −y2, and x2 +y2 +z2. © 2019, University of Waterloo. All rights reserved. | spa |
dc.format.extent | 15 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Integer Sequences | spa |
dc.title | Counting integers representable as images of polynomials modulo n | spa |
dcterms.bibliographicCitation | Burton, D.M. (2011) Elementary Number Theory. Cited 533 times. 7th ed., McGraw-Hill | spa |
dcterms.bibliographicCitation | Broughan, K.A. Characterizing the sum of two cubes (2003) Journal of Integer Sequences, 6 (4). Cited 5 times. http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Broughan/broughan25.pdf | spa |
dcterms.bibliographicCitation | Burns, R. (2017) Representing Numbers as the Sum of Squares and Powers in the Ring Zn, Preprint https://arxiv.org/abs/1708.03930 | spa |
dcterms.bibliographicCitation | Harrington, J., Jones, L., Lamarche, A. Representing integers as the sum of two squares in the ring ℤn (2014) Journal of Integer Sequences, 17 (7), art. no. 14.7.4. Cited 2 times. https://cs.uwaterloo.ca/journals/JIS/VOL17/Jones/jones14.pdf | spa |
dcterms.bibliographicCitation | Ireland, K., Rosen, M. (1990) A Classical Introduction to Modern Number Theory. Cited 1496 times. Second Edition, Springer-Verlag | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.identifier.url | https://cs.uwaterloo.ca/journals/JIS/ | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.subject.keywords | Diophantine Equation; | spa |
dc.subject.keywords | Number; | spa |
dc.subject.keywords | Linear Forms in Logarithms | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.