Mostrar el registro sencillo del ítem

dc.contributor.authorArias, Fabián
dc.contributor.authorBorja, Jerson
dc.contributor.authorRubio, Luis
dc.date.accessioned2023-07-21T16:24:19Z
dc.date.available2023-07-21T16:24:19Z
dc.date.issued2019
dc.date.submitted2023
dc.identifier.citationArias, F., Borja, J., & Rubio, L. (2018). Counting integers representable as images of polynomials modulo $ n$. arXiv preprint arXiv:1812.11599.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12340
dc.description.abstractGiven a polynomial f(x1,x2,…,xt) in t variables with integer coefficients and a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the polynomialcongruencef(x1,x2,…,xt) ≡ a(modn)issolvable. Wedescribeamethod that allows us to determine the function α associated with polynomials of the form c1xk1+c2xk2+···+ctxkt. Then, we apply this method to polynomials that involve sums and differences of squares, mainly to the polynomials x2 +y2, x2 −y2, and x2 +y2 +z2. © 2019, University of Waterloo. All rights reserved.spa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Integer Sequencesspa
dc.titleCounting integers representable as images of polynomials modulo nspa
dcterms.bibliographicCitationBurton, D.M. (2011) Elementary Number Theory. Cited 533 times. 7th ed., McGraw-Hillspa
dcterms.bibliographicCitationBroughan, K.A. Characterizing the sum of two cubes (2003) Journal of Integer Sequences, 6 (4). Cited 5 times. http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Broughan/broughan25.pdfspa
dcterms.bibliographicCitationBurns, R. (2017) Representing Numbers as the Sum of Squares and Powers in the Ring Zn, Preprint https://arxiv.org/abs/1708.03930spa
dcterms.bibliographicCitationHarrington, J., Jones, L., Lamarche, A. Representing integers as the sum of two squares in the ring ℤn (2014) Journal of Integer Sequences, 17 (7), art. no. 14.7.4. Cited 2 times. https://cs.uwaterloo.ca/journals/JIS/VOL17/Jones/jones14.pdfspa
dcterms.bibliographicCitationIreland, K., Rosen, M. (1990) A Classical Introduction to Modern Number Theory. Cited 1496 times. Second Edition, Springer-Verlagspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.identifier.urlhttps://cs.uwaterloo.ca/journals/JIS/
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.subject.keywordsDiophantine Equation;spa
dc.subject.keywordsNumber;spa
dc.subject.keywordsLinear Forms in Logarithmsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.