Mostrar el registro sencillo del ítem

dc.contributor.authorSuarez, Oscar J.
dc.contributor.authorMacias-Garcia, Edgar
dc.contributor.authorVega, Carlos J.
dc.contributor.authorPeñaloza, Yersica C.
dc.contributor.authorHernández Díaz, Nicolás
dc.contributor.authorGarrido, Victor M.
dc.date.accessioned2023-07-21T16:21:09Z
dc.date.available2023-07-21T16:21:09Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationSuarez, O. J., Macias-Garcia, E., Vega, C. J., Peñaloza, Y. C., Díaz, N. H., & Garrido, V. M. (2022, July). Design of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networks. In IEEE Colombian Conference on Applications of Computational Intelligence (pp. 1-17). Cham: Springer Nature Switzerland.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12322
dc.description.abstractDue to the computational power and memory of modern computers, computer vision techniques and neural networks can be used to develop a visual inspection system of agricultural products to satisfy product quality requirements. This chapter employs artificial vision techniques to classify seeds in RGB images. As a first step, an algorithm based on pixel intensity threshold is developed to detect and classify a set of different seed types, such as rice, beans, and lentils. Then, the information inferred by this algorithm is exploited to develop a neural network model, which successfully achieves learning classification and detection tasks through a semantic-segmentation scheme. The applicability and satisfactory performance of the proposed algorithms are illustrated by testing with real images, achieving an average accuracy of 92% in the selected set of classes. The experimental results verify that both algorithms can directly detect and classify the proposed set of seeds in input RGB images. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.spa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCommunications in Computer and Information Sciencespa
dc.titleDesign of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networksspa
dcterms.bibliographicCitationBen-Daya, M., Hassini, E., Bahroun, Z., Banimfreg, B.H. The role of internet of things in food supply chain quality management: A review (2020) Quality Management Journal, 28 (1), pp. 17-40. Cited 38 times. https://www.tandfonline.com/doi/full/10.1080/10686967.2020.1838978 doi: 10.1080/10686967.2020.1838978spa
dcterms.bibliographicCitationSchweizer, M., Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications (2013) IEEE Transactions on Power Electronics, 28 (2), art. no. 6213134, pp. 899-907. Cited 5093 times. doi: 10.1109/TPEL.2012.2203151spa
dcterms.bibliographicCitationConstante, P., Gordon, A., Chang, O., Pruna, E., Acuna, F., Escobar, I. Artificial Vision Techniques to Optimize Strawberrys Industrial Classification (2016) IEEE Latin America Transactions, 14 (6), art. no. 7555221, pp. 2576-2581. Cited 29 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2016.7555221spa
dcterms.bibliographicCitationDana, W., Ivo, W. Computer image analysis of seed shape and seed color for flax cultivar description (2008) Computers and Electronics in Agriculture, 61 (2), pp. 126-135. Cited 85 times. doi: 10.1016/j.compag.2007.10.001spa
dcterms.bibliographicCitationSchweizer, M., Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications (2013) IEEE Transactions on Power Electronics, 28 (2), art. no. 6213134, pp. 899-907. Cited 5093 times. doi: 10.1109/TPEL.2012.2203151spa
dcterms.bibliographicCitationGaldelli, A., D’imperio, M., Marchello, G., Mancini, A., Scaccia, M., Sasso, M., Frontoni, E., (...), Cannella, F. A Novel Remote Visual Inspection System for Bridge Predictive Maintenance (2022) Remote Sensing, 14 (9), art. no. 2248. Cited 6 times. https://www.mdpi.com/2072-4292/14/9/2248/pdf?version=1651926784 doi: 10.3390/rs14092248spa
dcterms.bibliographicCitationGolnabi, H., Asadpour, A. Design and application of industrial machine vision systems (2007) Robotics and Computer-Integrated Manufacturing, 23 (6), pp. 630-637. Cited 244 times. doi: 10.1016/j.rcim.2007.02.005spa
dcterms.bibliographicCitationHe, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 108313 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90spa
dcterms.bibliographicCitationIsmail, N., Malik, O.A. Real-time visual inspection system for grading fruits using computer vision and deep learning techniques (2022) Information Processing in Agriculture, 9 (1), pp. 24-37. Cited 42 times. http://www.elsevier.com/journals/information-processing-in-agriculture/2214-3173# doi: 10.1016/j.inpa.2021.01.005spa
dcterms.bibliographicCitationJaffery, Z.A., Dubey, A.K. Scope and prospects of non-invasive visual inspection systems for industrial applications (2016) Indian Journal of Science and Technology, 9 (4). Cited 13 times. http://www.indjst.org doi: 10.17485/ijst/2016/v9i4/80067spa
dcterms.bibliographicCitationJampílek, J., KráL'Ová, K. Application of Nanotechnology in Agriculture and Food Industry, Its Prospects and Risks (2015) Ecological Chemistry and Engineering S, 22 (3), pp. 321-361. Cited 92 times. http://www.degruyter.com/view/j/eces doi: 10.1515/eces-2015-0018spa
dcterms.bibliographicCitationJhawar, J. Orange Sorting by Applying Pattern Recognition on Colour Image (Open Access) (2016) Procedia Computer Science, 78, pp. 691-697. Cited 29 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2016.02.118spa
dcterms.bibliographicCitationBirmelé, E., Crescenzi, P., Ferreira, R., Grossi, R., Lacroix, V., Marino, A., Pisanti, N., (...), Sagot, M.-F. Efficient bubble enumeration in directed graphs (2012) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7608 LNCS, pp. 118-129. Cited 558 times. https://www.springer.com/series/558 ISBN: 978-364234108-3 doi: 10.1007/978-3-642-34109-0_13spa
dcterms.bibliographicCitationLecun, Y., Bengio, Y., Hinton, G. Deep learning (Open Access) (2015) Nature, 521 (7553), pp. 436-444. Cited 46322 times. http://www.nature.com/nature/index.html doi: 10.1038/nature14539spa
dcterms.bibliographicCitationLu, Y., Yi, S., Zeng, N., Liu, Y., Zhang, Y. Identification of rice diseases using deep convolutional neural networks (2017) Neurocomputing, 267, pp. 378-384. Cited 581 times. www.elsevier.com/locate/neucom doi: 10.1016/j.neucom.2017.06.023spa
dcterms.bibliographicCitationMacias-Garcia, E., Galeana-Perez, D. Multi-stage deep learning perception system for mobile robots (2020) Integr. Comput.-Aided Eng. (Preprint), pp. 1-15. Cited 3 times.spa
dcterms.bibliographicCitationMansuri, L.E., Patel, D.A. Artificial intelligence-based automatic visual inspection system for built heritage (2022) Smart and Sustainable Built Environment, 11 (3), pp. 622-646. Cited 19 times. www.emeraldinsight.com/products/journals/journals.htm?id=sasbe doi: 10.1108/SASBE-09-2020-0139spa
dcterms.bibliographicCitationManzoor, M.F., Hussain, A., Naumovski, N., Ranjha, M.M.A.N., Ahmad, N., Karrar, E., Xu, B., (...), Ibrahim, S.A. A Narrative Review of Recent Advances in Rapid Assessment of Anthocyanins in Agricultural and Food Products (Open Access) (2022) Frontiers in Nutrition, 9, art. no. 901342. Cited 14 times. journal.frontiersin.org/journal/nutrition doi: 10.3389/fnut.2022.901342spa
dcterms.bibliographicCitationMisra, N., Dixit, Y., Al-Mallahi, A., Bhullar, M., Upadhyay, R., Martynenko, A. IoT, big data and artificial intelligence in agriculture and food industry (2020) IEEE Internet of Things. Cited 42 times.spa
dcterms.bibliographicCitationNegrete, J. Artificial vision in Mexican agriculture, a new technology for increase food security (2018) Manag. Econ. J, pp. 381-398. Cited 3 times.spa
dcterms.bibliographicCitationNewman, T.S. Survey of automated visual inspection (Open Access) (1995) Computer Vision and Image Understanding, 61 (2), pp. 231-262. Cited 530 times. doi: 10.1006/cviu.1995.1017spa
dcterms.bibliographicCitationRavikumar, S., Ramachandran, K.I., Sugumaran, V. Machine learning approach for automated visual inspection of machine components (Open Access) (2011) Expert Systems with Applications, 38 (4), pp. 3260-3266. Cited 93 times. doi: 10.1016/j.eswa.2010.09.012spa
dcterms.bibliographicCitationRedmon, J., Farhadi, A. (2018) Yolov3: An Incremental Improvement. Arxiv, 1804, p. 02767. Cited 565 times.spa
dcterms.bibliographicCitationRomualdo, L.M., Luz, P.H.C., Devechio, F.F.S., Marin, M.A., Zúñiga, A.M.G., Bruno, O.M., Herling, V.R. Use of artificial vision techniques for diagnostic of nitrogen nutritional status in maize plants (2014) Computers and Electronics in Agriculture, 104, pp. 63-70. Cited 35 times. www.elsevier.com/inca/publications/store/5/0/3/3/0/4 doi: 10.1016/j.compag.2014.03.009spa
dcterms.bibliographicCitationGomes, J.F.S., Leta, F.R. Applications of computer vision techniques in the agriculture and food industry: A review (2012) European Food Research and Technology, 235 (6), pp. 989-1000. Cited 111 times. doi: 10.1007/s00217-012-1844-2spa
dcterms.bibliographicCitationSarkar, N.R. Machine vision for quality control in the food industry (2017) Instrumental Methods for Quality Assurance in Foods, pp. 167-187. Cited 11 times. http://www.tandfebooks.com/doi/book/10.1201/9780203750711 ISBN: 978-135143814-8; 978-082478278-8 doi: 10.1201/9780203750711spa
dcterms.bibliographicCitationSchmidhuber, J. Deep Learning in neural networks: An overview (2015) Neural Networks, 61, pp. 85-117. Cited 11372 times. www.elsevier.com/locate/neunet doi: 10.1016/j.neunet.2014.09.003spa
dcterms.bibliographicCitationSuarez, O.J., Díaz, N.H., Garcia, A.P. A real-time pattern recognition module via Matlab-Arduino interface (Open Access) (2020) Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology. Cited 2 times. http://www.laccei.org/index.php/publications/laccei-proceedings ISBN: 978-958520714-1 doi: 10.18687/LACCEI2020.1.1.646spa
dcterms.bibliographicCitationSchweizer, M., Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications (Open Access) (2013) IEEE Transactions on Power Electronics, 28 (2), art. no. 6213134, pp. 899-907. Cited 5093 times. doi: 10.1109/TPEL.2012.2203151spa
dcterms.bibliographicCitationSzeliski, R. (2010) Computer Vision: Algorithms and Applications. Cited 3570 times. Springer, Heidelbergspa
dcterms.bibliographicCitationVoulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell (2018) Neurosci, p. 2018. Cited 50 times.spa
dcterms.bibliographicCitationYu, C., Wang, J. BiSeNet: Bilateral segmentation network for real-time semantic segmentation (2018) Proceedings of the European Conference on Computer Vision, pp. 325-341. Cited 970 times.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1007/978-3-031-29783-0_1
dc.subject.keywordsObject Detection;spa
dc.subject.keywordsDeep Learning;spa
dc.subject.keywordsIOUspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.