Mostrar el registro sencillo del ítem
Design of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networks
dc.contributor.author | Suarez, Oscar J. | |
dc.contributor.author | Macias-Garcia, Edgar | |
dc.contributor.author | Vega, Carlos J. | |
dc.contributor.author | Peñaloza, Yersica C. | |
dc.contributor.author | Hernández Díaz, Nicolás | |
dc.contributor.author | Garrido, Victor M. | |
dc.date.accessioned | 2023-07-21T16:21:09Z | |
dc.date.available | 2023-07-21T16:21:09Z | |
dc.date.issued | 2023 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Suarez, O. J., Macias-Garcia, E., Vega, C. J., Peñaloza, Y. C., Díaz, N. H., & Garrido, V. M. (2022, July). Design of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networks. In IEEE Colombian Conference on Applications of Computational Intelligence (pp. 1-17). Cham: Springer Nature Switzerland. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12322 | |
dc.description.abstract | Due to the computational power and memory of modern computers, computer vision techniques and neural networks can be used to develop a visual inspection system of agricultural products to satisfy product quality requirements. This chapter employs artificial vision techniques to classify seeds in RGB images. As a first step, an algorithm based on pixel intensity threshold is developed to detect and classify a set of different seed types, such as rice, beans, and lentils. Then, the information inferred by this algorithm is exploited to develop a neural network model, which successfully achieves learning classification and detection tasks through a semantic-segmentation scheme. The applicability and satisfactory performance of the proposed algorithms are illustrated by testing with real images, achieving an average accuracy of 92% in the selected set of classes. The experimental results verify that both algorithms can directly detect and classify the proposed set of seeds in input RGB images. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. | spa |
dc.format.extent | 17 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Communications in Computer and Information Science | spa |
dc.title | Design of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networks | spa |
dcterms.bibliographicCitation | Ben-Daya, M., Hassini, E., Bahroun, Z., Banimfreg, B.H. The role of internet of things in food supply chain quality management: A review (2020) Quality Management Journal, 28 (1), pp. 17-40. Cited 38 times. https://www.tandfonline.com/doi/full/10.1080/10686967.2020.1838978 doi: 10.1080/10686967.2020.1838978 | spa |
dcterms.bibliographicCitation | Schweizer, M., Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications (2013) IEEE Transactions on Power Electronics, 28 (2), art. no. 6213134, pp. 899-907. Cited 5093 times. doi: 10.1109/TPEL.2012.2203151 | spa |
dcterms.bibliographicCitation | Constante, P., Gordon, A., Chang, O., Pruna, E., Acuna, F., Escobar, I. Artificial Vision Techniques to Optimize Strawberrys Industrial Classification (2016) IEEE Latin America Transactions, 14 (6), art. no. 7555221, pp. 2576-2581. Cited 29 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2016.7555221 | spa |
dcterms.bibliographicCitation | Dana, W., Ivo, W. Computer image analysis of seed shape and seed color for flax cultivar description (2008) Computers and Electronics in Agriculture, 61 (2), pp. 126-135. Cited 85 times. doi: 10.1016/j.compag.2007.10.001 | spa |
dcterms.bibliographicCitation | Schweizer, M., Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications (2013) IEEE Transactions on Power Electronics, 28 (2), art. no. 6213134, pp. 899-907. Cited 5093 times. doi: 10.1109/TPEL.2012.2203151 | spa |
dcterms.bibliographicCitation | Galdelli, A., D’imperio, M., Marchello, G., Mancini, A., Scaccia, M., Sasso, M., Frontoni, E., (...), Cannella, F. A Novel Remote Visual Inspection System for Bridge Predictive Maintenance (2022) Remote Sensing, 14 (9), art. no. 2248. Cited 6 times. https://www.mdpi.com/2072-4292/14/9/2248/pdf?version=1651926784 doi: 10.3390/rs14092248 | spa |
dcterms.bibliographicCitation | Golnabi, H., Asadpour, A. Design and application of industrial machine vision systems (2007) Robotics and Computer-Integrated Manufacturing, 23 (6), pp. 630-637. Cited 244 times. doi: 10.1016/j.rcim.2007.02.005 | spa |
dcterms.bibliographicCitation | He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 108313 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90 | spa |
dcterms.bibliographicCitation | Ismail, N., Malik, O.A. Real-time visual inspection system for grading fruits using computer vision and deep learning techniques (2022) Information Processing in Agriculture, 9 (1), pp. 24-37. Cited 42 times. http://www.elsevier.com/journals/information-processing-in-agriculture/2214-3173# doi: 10.1016/j.inpa.2021.01.005 | spa |
dcterms.bibliographicCitation | Jaffery, Z.A., Dubey, A.K. Scope and prospects of non-invasive visual inspection systems for industrial applications (2016) Indian Journal of Science and Technology, 9 (4). Cited 13 times. http://www.indjst.org doi: 10.17485/ijst/2016/v9i4/80067 | spa |
dcterms.bibliographicCitation | Jampílek, J., KráL'Ová, K. Application of Nanotechnology in Agriculture and Food Industry, Its Prospects and Risks (2015) Ecological Chemistry and Engineering S, 22 (3), pp. 321-361. Cited 92 times. http://www.degruyter.com/view/j/eces doi: 10.1515/eces-2015-0018 | spa |
dcterms.bibliographicCitation | Jhawar, J. Orange Sorting by Applying Pattern Recognition on Colour Image (Open Access) (2016) Procedia Computer Science, 78, pp. 691-697. Cited 29 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2016.02.118 | spa |
dcterms.bibliographicCitation | Birmelé, E., Crescenzi, P., Ferreira, R., Grossi, R., Lacroix, V., Marino, A., Pisanti, N., (...), Sagot, M.-F. Efficient bubble enumeration in directed graphs (2012) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7608 LNCS, pp. 118-129. Cited 558 times. https://www.springer.com/series/558 ISBN: 978-364234108-3 doi: 10.1007/978-3-642-34109-0_13 | spa |
dcterms.bibliographicCitation | Lecun, Y., Bengio, Y., Hinton, G. Deep learning (Open Access) (2015) Nature, 521 (7553), pp. 436-444. Cited 46322 times. http://www.nature.com/nature/index.html doi: 10.1038/nature14539 | spa |
dcterms.bibliographicCitation | Lu, Y., Yi, S., Zeng, N., Liu, Y., Zhang, Y. Identification of rice diseases using deep convolutional neural networks (2017) Neurocomputing, 267, pp. 378-384. Cited 581 times. www.elsevier.com/locate/neucom doi: 10.1016/j.neucom.2017.06.023 | spa |
dcterms.bibliographicCitation | Macias-Garcia, E., Galeana-Perez, D. Multi-stage deep learning perception system for mobile robots (2020) Integr. Comput.-Aided Eng. (Preprint), pp. 1-15. Cited 3 times. | spa |
dcterms.bibliographicCitation | Mansuri, L.E., Patel, D.A. Artificial intelligence-based automatic visual inspection system for built heritage (2022) Smart and Sustainable Built Environment, 11 (3), pp. 622-646. Cited 19 times. www.emeraldinsight.com/products/journals/journals.htm?id=sasbe doi: 10.1108/SASBE-09-2020-0139 | spa |
dcterms.bibliographicCitation | Manzoor, M.F., Hussain, A., Naumovski, N., Ranjha, M.M.A.N., Ahmad, N., Karrar, E., Xu, B., (...), Ibrahim, S.A. A Narrative Review of Recent Advances in Rapid Assessment of Anthocyanins in Agricultural and Food Products (Open Access) (2022) Frontiers in Nutrition, 9, art. no. 901342. Cited 14 times. journal.frontiersin.org/journal/nutrition doi: 10.3389/fnut.2022.901342 | spa |
dcterms.bibliographicCitation | Misra, N., Dixit, Y., Al-Mallahi, A., Bhullar, M., Upadhyay, R., Martynenko, A. IoT, big data and artificial intelligence in agriculture and food industry (2020) IEEE Internet of Things. Cited 42 times. | spa |
dcterms.bibliographicCitation | Negrete, J. Artificial vision in Mexican agriculture, a new technology for increase food security (2018) Manag. Econ. J, pp. 381-398. Cited 3 times. | spa |
dcterms.bibliographicCitation | Newman, T.S. Survey of automated visual inspection (Open Access) (1995) Computer Vision and Image Understanding, 61 (2), pp. 231-262. Cited 530 times. doi: 10.1006/cviu.1995.1017 | spa |
dcterms.bibliographicCitation | Ravikumar, S., Ramachandran, K.I., Sugumaran, V. Machine learning approach for automated visual inspection of machine components (Open Access) (2011) Expert Systems with Applications, 38 (4), pp. 3260-3266. Cited 93 times. doi: 10.1016/j.eswa.2010.09.012 | spa |
dcterms.bibliographicCitation | Redmon, J., Farhadi, A. (2018) Yolov3: An Incremental Improvement. Arxiv, 1804, p. 02767. Cited 565 times. | spa |
dcterms.bibliographicCitation | Romualdo, L.M., Luz, P.H.C., Devechio, F.F.S., Marin, M.A., Zúñiga, A.M.G., Bruno, O.M., Herling, V.R. Use of artificial vision techniques for diagnostic of nitrogen nutritional status in maize plants (2014) Computers and Electronics in Agriculture, 104, pp. 63-70. Cited 35 times. www.elsevier.com/inca/publications/store/5/0/3/3/0/4 doi: 10.1016/j.compag.2014.03.009 | spa |
dcterms.bibliographicCitation | Gomes, J.F.S., Leta, F.R. Applications of computer vision techniques in the agriculture and food industry: A review (2012) European Food Research and Technology, 235 (6), pp. 989-1000. Cited 111 times. doi: 10.1007/s00217-012-1844-2 | spa |
dcterms.bibliographicCitation | Sarkar, N.R. Machine vision for quality control in the food industry (2017) Instrumental Methods for Quality Assurance in Foods, pp. 167-187. Cited 11 times. http://www.tandfebooks.com/doi/book/10.1201/9780203750711 ISBN: 978-135143814-8; 978-082478278-8 doi: 10.1201/9780203750711 | spa |
dcterms.bibliographicCitation | Schmidhuber, J. Deep Learning in neural networks: An overview (2015) Neural Networks, 61, pp. 85-117. Cited 11372 times. www.elsevier.com/locate/neunet doi: 10.1016/j.neunet.2014.09.003 | spa |
dcterms.bibliographicCitation | Suarez, O.J., Díaz, N.H., Garcia, A.P. A real-time pattern recognition module via Matlab-Arduino interface (Open Access) (2020) Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology. Cited 2 times. http://www.laccei.org/index.php/publications/laccei-proceedings ISBN: 978-958520714-1 doi: 10.18687/LACCEI2020.1.1.646 | spa |
dcterms.bibliographicCitation | Schweizer, M., Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications (Open Access) (2013) IEEE Transactions on Power Electronics, 28 (2), art. no. 6213134, pp. 899-907. Cited 5093 times. doi: 10.1109/TPEL.2012.2203151 | spa |
dcterms.bibliographicCitation | Szeliski, R. (2010) Computer Vision: Algorithms and Applications. Cited 3570 times. Springer, Heidelberg | spa |
dcterms.bibliographicCitation | Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell (2018) Neurosci, p. 2018. Cited 50 times. | spa |
dcterms.bibliographicCitation | Yu, C., Wang, J. BiSeNet: Bilateral segmentation network for real-time semantic segmentation (2018) Proceedings of the European Conference on Computer Vision, pp. 325-341. Cited 970 times. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1007/978-3-031-29783-0_1 | |
dc.subject.keywords | Object Detection; | spa |
dc.subject.keywords | Deep Learning; | spa |
dc.subject.keywords | IOU | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.