Mostrar el registro sencillo del ítem

dc.contributor.authorSalgado-Cassiani, Julio Jose
dc.contributor.authorCoronado-Hernández, Oscar E.
dc.contributor.authorGatica, Gustavo
dc.contributor.authorLinfati, Rodrigo
dc.contributor.authorCoronado-Hernández, Jairo R
dc.date.accessioned2023-07-21T16:19:34Z
dc.date.available2023-07-21T16:19:34Z
dc.date.issued2022-04-10
dc.date.submitted2023-07
dc.identifier.citationSalgado-Cassiani, J.J.; Coronado-Hernández, O.E.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia. Water 2022, 14, 1217. https://doi.org/10.3390/w14081217spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12315
dc.description.abstractPrevious soil moisture conditions play an important role in the design of hydraulic structures because they are directly related to the runoff threshold associated with a return period. These represent one of the main determinants of the runoff response of a drainage basin. One of the main difficulties facing hydrologists in Colombia lies in the time spent gathering and analyzing information related to the selection of antecedent moisture conditions. In this study, complete records from 19 rainfall stations located in the Atlántico region, Colombia, were used to analyze the cumulative precipitation during the 5 days prior to the annual maximum daily precipitation associated with different return periods using the Gev, Gumbel, Pearson Type III and Log Pearson Type III probability distributions. Different interpolation methods (IDW, kriging and spline) were applied to evaluate the spatial distribution of the antecedent moisture conditions. The main contribution of this research is establishing, using a probabilistic approach, the behavior of antecedent moisture conditions in a particular region, which can be used by engineers and designers to plan water infrastructure. This probabilistic approach was applied to a case study of the Atlántico region, Colombia, where the spatial distribution of antecedent moisture conditions was calculated for several return periods. The results indicate that the better results were obtained with the IDW interpolation method, and the Pearson Type III and Gumbel distributions also showed the best fits based on the Akaike criterion.spa
dc.format.extent24 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater (Switzerland) - Vol. 14 No 8 (2022)spa
dc.titleProbabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombiaspa
dcterms.bibliographicCitationChow, V.T., Maidment, D.R., Mays, L.W. (1988) Applied Hydrology, pp. 350-376. Cited 4195 times. 1st ed.; McGraw-Hill: New York, NY, USAspa
dcterms.bibliographicCitationCeballos, A., Schnabel, S. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain) (1998) Journal of Hydrology, 210 (1-4), pp. 146-160. Cited 97 times. doi: 10.1016/S0022-1694(98)00180-2spa
dcterms.bibliographicCitationDusek, J., Vogel, T. Hillslope-storage and rainfall-amount thresholds as controls of preferential stormflow (2016) Journal of Hydrology, 534, pp. 590-605. Cited 23 times. www.elsevier.com/inca/publications/store/5/0/3/3/4/3 doi: 10.1016/j.jhydrol.2016.01.047spa
dcterms.bibliographicCitationBerne, A., Delrieu, G., Creutin, J.-D., Obled, C. Temporal and spatial resolution of rainfall measurements required for urban hydrology (2004) Journal of Hydrology, 299 (3-4), pp. 166-179. Cited 369 times. www.elsevier.com/inca/publications/store/5/0/3/3/4/3 doi: 10.1016/S0022-1694(04)00363-4spa
dcterms.bibliographicCitationManfreda, S., Fiorentino, M., Iacobellis, V. DREAM: A distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation (2005) Advances in Geosciences, 2, pp. 31-39. Cited 62 times. http://www.adv-geosci.net/volumes.html doi: 10.5194/adgeo-2-31-2005spa
dcterms.bibliographicCitationLazzari, M., Piccarreta, M., Ray, L.R., Manfreda, S. Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shallow Landslides Occurrence (2020) Landslides: Investigation and Monitoring. Cited 9 times. Ram, L.R., Lazzari, M., Eds.; IntechOpen: London, UK, (accessed on 1 February 2022) https://www.intechopen.com/chapters/72592spa
dcterms.bibliographicCitationLazzari, M., Piccarreta, M., Manfreda, S. The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides (2018) Nat. Hazards Earth Syst. Sci, pp. 1-11. Cited 17 times. https://nhess.coperni-cus.org/preprints/nhess-2018-371 (accessed on 20 February 2022) https://doi.org/10.5194/nhess-2018-371spa
dcterms.bibliographicCitationPoveda, G., Jaramillo, A., Gil, M.M., Quiceno, N., Mantilla, R.I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia (2001) Water Resources Research, 37 (8), pp. 2169-2178. Cited 178 times. doi: 10.1029/2000WR900395spa
dcterms.bibliographicCitationKim, G.-S., Lee, S.-G., Lee, J., Park, E., Song, C., Hong, M., Ko, Y.-J., (...), Lee, W.-K. Effects of Forest and Agriculture Land Covers on Organic Carbon Flux Mediated through Precipitation (2022) Water (Switzerland), 14 (4), art. no. 623. https://www.mdpi.com/2073-4441/14/4/623/pdf doi: 10.3390/w14040623spa
dcterms.bibliographicCitationDarouich, H., Ramos, T.B., Pereira, L.S., Rabino, D., Bagagiolo, G., Capello, G., Simionesei, L., (...), Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation (2022) Water (Switzerland), 14 (4), art. no. 554. Cited 9 times. https://www.mdpi.com/2073-4441/14/4/554/pdf doi: 10.3390/w14040554spa
dcterms.bibliographicCitationWaylen, P., Poveda, G. El Nino-Southern Oscillation and aspects of western South American hydro-climatology (2002) Hydrological Processes, 16 (6), pp. 1247-1260. Cited 56 times. doi: 10.1002/hyp.1060spa
dcterms.bibliographicCitationde Alcântara, L.R.P., Coutinho, A.P., Neto, S.M.S., de Gusmão da Cunha Rabelo, A.E.C., Antonino, A.C.D. Computational modeling of the hydrological processes in caatinga and pasture areas in the brazilian semi-arid (2021) Water (Switzerland), 13 (13), art. no. 1877. Cited 4 times. https://www.mdpi.com/2073-4441/13/13/1877/pdf doi: 10.3390/w13131877spa
dcterms.bibliographicCitation(1967) A Uniform Technique for Determining Flood Flow Frequencies. Cited 27 times. Bulletin 15; U.S. Water Resources Council: Washington, DC, USAspa
dcterms.bibliographicCitationCunnane, C. Methods and merits of regional flood frequency analysis (1988) Journal of Hydrology, 100 (1-3), pp. 269-290. Cited 274 times. doi: 10.1016/0022-1694(88)90188-6spa
dcterms.bibliographicCitationGriffis, V.W., Stedinger, J.R. Log-Pearson type 3 distribution and Its application in flood frequency analysis. I: Distribution characteristics (Open Access) (2007) Journal of Hydrologic Engineering, 12 (5), pp. 482-491. Cited 97 times. doi: 10.1061/(ASCE)1084-0699(2007)12:5(482)spa
dcterms.bibliographicCitationBurgess, C.P., Taylor, M.A., Stephenson, T., Mandal, A. Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895-2100) (2015) Journal of Hydrology: Regional Studies, 3, pp. 424-443. Cited 14 times. doi: 10.1016/j.ejrh.2014.10.004spa
dcterms.bibliographicCitationGonzález-álvarez, A., Viloria-Marimón, O.M., Coronado-Hernández, O.E., Vélez-Pereira, A.M., Tesfagiorgis, K., Coronado-Hernández, J.R. Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region (Open Access) (2019) Water (Switzerland), 11 (2), art. no. 358. Cited 17 times. https://res.mdpi.com/water/water-11-00358/article_deploy/water-11-00358.pdf doi: 10.3390/w11020358spa
dcterms.bibliographicCitationizarro, R., Ingram, B., Gonzalez-Leiva, F., Valdés-Pineda, R., Sangüesa, C., Delgado, N., García-Chevesich, P., (...), Valdés, J.B. WEBSEIDF: A web-based system for the estimation of IDF curves in central Chile (Open Access) (2018) Hydrology, 5 (3), art. no. 40. Cited 8 times. https://res.mdpi.com/hydrology/hydrology-05-00040/article_deploy/hydrology-05-00040.pdf?filename=&attachment=1 doi: 10.3390/hydrology5030040spa
dcterms.bibliographicCitationAkaike, H. A New Look at the Statistical Model Identification (1974) IEEE Transactions on Automatic Control, 19 (6), pp. 716-723. Cited 37038 times. doi: 10.1109/TAC.1974.1100705spa
dcterms.bibliographicCitationAkaike, H. Information theory and an extension of the maximum likelihood principle (1998) Selected Papers of Hirotugu Akaike, pp. 199-213. Cited 1694 times. Springer: Berlin/Heidelberg, Germanyspa
dcterms.bibliographicCitationSalas, J.D., Obeysekera, J., Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: a review (Open Access) (2018) Hydrological Sciences Journal, 63 (3), pp. 325-352. Cited 128 times. http://www.tandfonline.com/loi/thsj20 doi: 10.1080/02626667.2018.1426858spa
dcterms.bibliographicCitationIkechukwu, M.N., Ebinne, E., Idorenyin, U., Raphael, N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study (2017) Earth Environ. Sci, 9, pp. 354-371. Cited 62 times.spa
dcterms.bibliographicCitationNgongondo, C., Li, L., Gong, L., Xu, C.-Y., Alemaw, B.F. Flood frequency under changing climate in the upper Kafue River basin, southern Africa: A large scale hydrological model application (Open Access) (2013) Stochastic Environmental Research and Risk Assessment, 27 (8), pp. 1883-1898. Cited 21 times. doi: 10.1007/s00477-013-0724-zspa
dcterms.bibliographicCitationLópez, J., Goñi, M., Martín, I.S., Erro, J. Regional frequency analysis of annual maximum daily rainfall in Navarra (2019) Quantiles mapping. Ing. Del Agua, 23, pp. 33-51.spa
dcterms.bibliographicCitationBhunia, G.S., Shit, P.K., Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC) (Open Access) (2018) Journal of the Saudi Society of Agricultural Sciences, 17 (2), pp. 114-126. Cited 175 times. https://www.journals.elsevier.com/journal-of-the-saudi-society-of-agricultural-sciences/ doi: 10.1016/j.jssas.2016.02.001spa
dcterms.bibliographicCitationVargas, A., Santos, A., Cárdenas, E., Obregón, N. Distribution and spatial interpolation of rainfall in Bogotá, Colombia (2011) Dyna, 167, pp. 151-159. Cited 14 times.spa
dcterms.bibliographicCitationSimpson, G., Wu, Y.H. Accuracy and effort of interpolation and sampling: Can GIS help lower field costs? (Open Access) (2014) ISPRS International Journal of Geo-Information, 3 (4), pp. 1317-1333. Cited 25 times. http://www.mdpi.com/2220-9964/3/4/1317/pdf doi: 10.3390/ijgi3041317spa
dcterms.bibliographicCitationMarzouk, M., Attia, K., Azab, S. Assessment of Coastal Vulnerability to Climate Change Impacts using GIS and Remote Sensing: A Case Study of Al-Alamein New City (Open Access) (2021) Journal of Cleaner Production, 290, art. no. 125723. Cited 13 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.125723spa
dcterms.bibliographicCitationMalam Issa, O., Valentin, C., Rajot, J.L., Cerdan, O., Desprats, J.-F., Bouchet, T. Runoff generation fostered by physical and biological crusts in semi-arid sandy soils (2011) Geoderma, 167-168, pp. 22-29. Cited 69 times. doi: 10.1016/j.geoderma.2011.09.013spa
dcterms.bibliographicCitationDunne, T. Relation of field studies and modeling in the prediction of storm runoff (Open Access) (1983) Journal of Hydrology, 65 (1-3), pp. 25-48. Cited 169 times. doi: 10.1016/0022-1694(83)90209-3spa
dcterms.bibliographicCitationBarling, R.D., Moore, I.D., Grayson, R.B. A quasi‐dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content (Open Access) (1994) Water Resources Research, 30 (4), pp. 1029-1044. Cited 238 times. doi: 10.1029/93WR03346spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/w14081217
dc.subject.keywordsAntecedent moisture conditionspa
dc.subject.keywordsFrequency analysisspa
dc.subject.keywordsPrecipitationspa
dc.subject.keywordsReturn periodspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.