Mostrar el registro sencillo del ítem

dc.contributor.authorPuertas, Edwin
dc.contributor.authorMartinez-Santos, Juan Carlos
dc.contributor.authorPertuz-Duran, Pablo Andres
dc.date.accessioned2023-07-21T16:19:15Z
dc.date.available2023-07-21T16:19:15Z
dc.date.issued2022
dc.date.submitted2023-07
dc.identifier.citationPuertas, E., Martinez-Santos, J.C., Andres Pertuz-Duran, P. Presidential preferences in Colombia through Sentiment Analysis (2022) 2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022, . DOI: 10.1109/ANDESCON56260.2022.9989700spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12314
dc.description.abstractThis work carries out the sentiment analysis of the social network Twitter regarding the presidential debate on May 23, where a hashtag was left open so viewers could give their points of view on these three candidates: Gustavo Petro, Federico Gutierrez, and Rodolfo Hernández. Once we extracted these Tweets contained in the hashtag, they were manually classified. They then went through all the pre-processing and elimination of special characters, links, URLs, images, or videos. Next, the TextVectorization layer from the TensorFlow library was used to convert these tweets to vectors and finally to go through the two models. The results show the best results for the BERT model with an accuracy of 76% and an F1 score of 85%.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022spa
dc.titlePresidential preferences in Colombia through Sentiment Analysisspa
dcterms.bibliographicCitationAlva-Segura, D.A. (2021) Análisis Del Sentimiento Político en Twitter Durante Las Elecciones Congresales 2020 en El Perú Master's thesisspa
dcterms.bibliographicCitationCuervo, M.C., Guerrero, M.A.V. Predicción electoral usando un modelo híbrido basado en análisis sentimental: Elecciones presidenciales de Colombia (2019) Revista Politécnica, 15 (30), pp. 94-104.spa
dcterms.bibliographicCitationAndriot, J., Park, B., Francia, P., Gudivada, V.N. Sentiment analysis of democratic presidential primaries debate tweets using machine learning models (2020) Advances in Intelligent Systems and Computing, 1155, pp. 339-349. http://www.springer.com/series/11156 ISBN: 978-981154028-8 doi: 10.1007/978-981-15-4029-5_34spa
dcterms.bibliographicCitationBoiy, E., Hens, P., Deschacht, K., Moens, M.-F. Automatic sentiment analysis in on-line text (2007) Openness in Digital Publishing: Awareness, Discovery and Access - Proceedings of the 11th International Conference on Electronic Publishing, ELPUB 2007, pp. 349-360. Cited 144 times. ISBN: 978-385437292-9spa
dcterms.bibliographicCitationNaiknaware, B.R., Kawathekar, S.S. Prediction of 2019 Indian Election using sentiment analysis (2019) Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018, art. no. 8653602, pp. 660-665. Cited 8 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8651203 ISBN: 978-153861442-6 doi: 10.1109/I-SMAC.2018.8653602spa
dcterms.bibliographicCitationAbdullah, M., Hadzikadic, M. (2017) Sentiment Analysis of Twitter Data: Emotions Revealed Regarding Donald Trump during the 2015-16 Primary Debates., pp. 760-764.spa
dcterms.bibliographicCitationPuertas, E., Moreno-Sandoval, L.G., Redondo, J., Alvarado-Valencia, J.A., Pomares-Quimbaya, A. Detection of Sociolinguistic Features in Digital Social Networks for the Detection of Communities (2021) Cognitive Computation, 13 (2), pp. 518-537. Cited 4 times. http://www.springer.com/biomed/neuroscience/journal/12559 doi: 10.1007/s12559-021-09818-9spa
dcterms.bibliographicCitationMoreno-Sandoval, L.G., Del Castillo, E.A.P., Quimbaya, A.P., Alvarado-Valencia, J.A. Assembly of polarity, emotion and user statistics for detection of fake profiles (2020) CLEF (Working Notes). Cited 3 times.spa
dcterms.bibliographicCitationPuertas, E., Martinez-Santos, J.C. (2021) Phonetic Detection for Hate Speech Spreaders on Twitter. Cited 3 times.spa
dcterms.bibliographicCitationSmagulova, K., James, A.P. A survey on LSTM memristive neural network architectures and applications (2019) European Physical Journal: Special Topics, 228 (10), pp. 2313-2324. Cited 126 times. http://www.springer.com/west/home?SGWID=4-102-70-173670503-0&changeHeader=true doi: 10.1140/epjst/e2019-900046-xspa
dcterms.bibliographicCitationChicco, D., Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation (Open Access) (2020) BMC Genomics, 21 (1), art. no. 6. Cited 1810 times. http://www.biomedcentral.com/bmcgenomics doi: 10.1186/s12864-019-6413-7spa
dcterms.bibliographicCitationZou, Q., Xie, S., Lin, Z., Wu, M., Ju, Y. Finding the Best Classification Threshold in Imbalanced Classification (Open Access) (2016) Big Data Research, 5, pp. 2-8. Cited 131 times. https://www.journals.elsevier.com/big-data-research doi: 10.1016/j.bdr.2015.12.001spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/ANDESCON56260.2022.9989700
dc.subject.keywordsLanguage modelspa
dc.subject.keywordsNatural language processingspa
dc.subject.keywordsPresidential debatespa
dc.subject.keywordsSentimental analysisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.