Mostrar el registro sencillo del ítem

dc.contributor.authorCamargo, Luis
dc.contributor.authorComas, Daniel
dc.contributor.authorCardenas Escorcia, Yulineth
dc.contributor.authorAlviz-Meza, Anibal
dc.contributor.authorCarrillo Caballero, Gaylord
dc.contributor.authorPortnoy, Ivan
dc.date.accessioned2023-07-21T15:53:30Z
dc.date.available2023-07-21T15:53:30Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationCamargo, L., Comas, D., Escorcia, Y. C., Alviz-Meza, A., Caballero, G. C., & Portnoy, I. (2023). Bibliometric analysis of global trends around hydrogen production based on the scopus database in the period 2011–2021. Energies, 16 (87), 1-25.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12298
dc.description.abstractGiven the increase in population and energy demand worldwide, alternative methods have been adopted for the production of hydrogen as a clean energy source. This energy offers an alternative energy source due to its high energy content, and without emissions to the environment. In this bibliometric analysis of energy production using electrolysis and taking into account the different forms of energy production. In this analysis, it was possible to evaluate the research trends based on the literature in the Scopus database during the years 2011–2021. The results showed a growing interest in hydrogen production from electrolysis and other mechanisms, with China being the country with the highest number of publications and the United States TOP in citations. The trend shows that during the first four years of this study (2011–2014), the average number of publications was 74 articles per year, from 2015 to 2021 where the growth is an average of 209 articles, the journal that published the most on this topic is Applied Energy, followed by Energy, contributing with almost 33% in the research area. Lastly, the keyword analysis identified six important research points for future discussions, which we have termed clusters. The study concludes that new perspectives on clean hydrogen energy generation, environmental impacts, and social acceptance could contribute to the positive evolution of the hydrogen energy industry. © 2022 by the authors.spa
dc.format.extent25 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies, 16 (87), 1-25.spa
dc.titleBibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021spa
dcterms.bibliographicCitationTemiz, M., Dincer, I. Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems (2021) Energy, 219, art. no. 119554. Cited 51 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2020.119554spa
dcterms.bibliographicCitationSu, C.-W., Khan, K., Umar, M., Chang, T. Renewable energy in prism of technological innovation and economic uncertainty (2022) Renewable Energy, 189, pp. 467-478. Cited 17 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2022.02.110spa
dcterms.bibliographicCitationSajjad, U., Abbas, N., Hamid, K., Abbas, S., Hussain, I., Ammar, S.M., Sultan, M., (...), Wang, C.C. A review of recent advances in indirect evaporative cooling technology (Open Access) (2021) International Communications in Heat and Mass Transfer, 122, art. no. 105140. Cited 48 times. https://www.journals.elsevier.com/international-communications-in-heat-and-mass-transfer doi: 10.1016/j.icheatmasstransfer.2021.105140spa
dcterms.bibliographicCitationSebbahi, S., Nabil, N., Alaoui-Belghiti, A., Laasri, S., Rachidi, S., Hajjaji, A. Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis (2022) Materials Today: Proceedings, Part 1 66, pp. 140-145. Cited 15 times. https://www.sciencedirect.com/journal/materials-today-proceedings doi: 10.1016/j.matpr.2022.04.264spa
dcterms.bibliographicCitationNicoletti, G., Arcuri, N., Nicoletti, G., Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels (2015) Energy Conversion and Management, 89, pp. 205-213. Cited 280 times. https://www.journals.elsevier.com/energy-conversion-and-management doi: 10.1016/j.enconman.2014.09.057spa
dcterms.bibliographicCitationYu, M., Wang, K., Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen (2021) International Journal of Hydrogen Energy, 46 (41), pp. 21261-21273. Cited 156 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2021.04.016spa
dcterms.bibliographicCitationDeng, W., Pei, W., Yi, Y., Zhuang, Y., Kong, L. Study on enhancing hydrogen production potential from renewable energy in multi-terminal DC system (2021) Energy Reports, 7, pp. 395-404. Cited 3 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.08.033spa
dcterms.bibliographicCitationWei, D., Zhang, L., Alotaibi, A.A., Fang, J., Alshahri, A.H., Almitani, K.H. Transient simulation and comparative assessment of a hydrogen production and storage system with solar and wind energy using TRNSYS (2022) International Journal of Hydrogen Energy, 47 (62), pp. 26646-26653. Cited 7 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.02.157spa
dcterms.bibliographicCitationMa, B., Liu, S., Pei, F., Su, Z., Yu, J., Hao, C., Li, Q., (...), Gan, Z. Development of Hydrogen Energy Storage Industry and Research Progress of Hydrogen Production Technology (2021) Proceedings of 2021 IEEE 4th International Electrical and Energy Conference, CIEEC 2021, art. no. 9510748. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9510195 ISBN: 978-172817149-4 doi: 10.1109/CIEEC50170.2021.9510748spa
dcterms.bibliographicCitationYue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges (2021) Renewable and Sustainable Energy Reviews, 146, art. no. 111180. Cited 406 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2021.111180spa
dcterms.bibliographicCitationBacquart, T., Arrhenius, K., Persijn, S., Rojo, A., Auprêtre, F., Gozlan, B., Moore, N., (...), Haloua, F. Hydrogen fuel quality from two main production processes: Steam methane reforming and proton exchange membrane water electrolysis (Open Access) (2019) Journal of Power Sources, 444, art. no. 227170. Cited 31 times. https://www.journals.elsevier.com/journal-of-power-sources doi: 10.1016/j.jpowsour.2019.227170spa
dcterms.bibliographicCitationSimoes, S.G., Catarino, J., Picado, A., Lopes, T.F., di Berardino, S., Amorim, F., Gírio, F., (...), Ponce de Leão, T. Water availability and water usage solutions for electrolysis in hydrogen production (Open Access) (2021) Journal of Cleaner Production, 315, art. no. 128124. Cited 27 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2021.128124spa
dcterms.bibliographicCitationManna, J., Jha, P., Sarkhel, R., Banerjee, C., Tripathi, A.K., Nouni, M.R. Opportunities for green hydrogen production in petroleum refining and ammonia synthesis industries in India (2021) International Journal of Hydrogen Energy, 46 (77), pp. 38212-38231. Cited 36 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2021.09.064spa
dcterms.bibliographicCitationLiu, W., Zuo, H., Wang, J., Xue, Q., Ren, B., Yang, F. The production and application of hydrogen in steel industry (2021) International Journal of Hydrogen Energy, 46 (17), pp. 10548-10569. Cited 129 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2020.12.123spa
dcterms.bibliographicCitationPaul, A., Symes, M.D. Decoupled electrolysis for water splitting (2021) Current Opinion in Green and Sustainable Chemistry, 29, art. no. 100453. Cited 13 times. http://www.journals.elsevier.com/current-opinion-in-green-and-sustainable-chemistry doi: 10.1016/j.cogsc.2021.100453spa
dcterms.bibliographicCitationLiu, T., Wang, J., Yang, X., Gong, M. A review of pulse electrolysis for efficient energy conversion and chemical production (2021) Journal of Energy Chemistry, 59, pp. 69-82. Cited 22 times. elsevier.com/journals/journal-of-energy-chemistry/2095-4956 doi: 10.1016/j.jechem.2020.10.027spa
dcterms.bibliographicCitationd'Amore-Domenech, R., Santiago, Ó., Leo, T.J. Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea (2020) Renewable and Sustainable Energy Reviews, 133, art. no. 110166. Cited 66 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.110166spa
dcterms.bibliographicCitationSui, Y., Abdulkreem AL-Huqail, A., Suhatril, M., Abed, A.M., Zhao, Y., Assilzadeh, H., Amine Khadimallah, M., (...), Elhosiny Ali, H. Hydrogen energy of mining waste waters: Extraction and analysis of solving issues (2023) Fuel, Part 1 331, art. no. 125685. http://www.journals.elsevier.com/fuel/ doi: 10.1016/j.fuel.2022.125685spa
dcterms.bibliographicCitationTerlouw, T., Bauer, C., McKenna, R., Mazzotti, M. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment (2022) Energy and Environmental Science, 15 (9), pp. 3583-3602. Cited 38 times. http://pubs.rsc.org/en/journals/journal/ee doi: 10.1039/d2ee01023bspa
dcterms.bibliographicCitationLi, H., Liang, X., Li, Y., Lin, F. Performance of High-Layer-Thickness Ti6Al4V Fabricated by Electron Beam Powder Bed Fusion under Different Accelerating Voltage Values (Open Access) (2022) Materials, 15 (5), art. no. 1878. Cited 2 times. https://www.mdpi.com/1996-1944/15/5/1878/pdf doi: 10.3390/ma15051878spa
dcterms.bibliographicCitationAlhassan, M., Jalil, A.A., Nabgan, W., Hamid, M.Y.S., Bahari, M.B., Ikram, M. Bibliometric studies and impediments to valorization of dry reforming of methane for hydrogen production (2022) Fuel, 328, art. no. 125240. Cited 8 times. http://www.journals.elsevier.com/fuel/ doi: 10.1016/j.fuel.2022.125240spa
dcterms.bibliographicCitationRaman, R., Nair, V.K., Prakash, V., Patwardhan, A., Nedungadi, P. Green-hydrogen research: What have we achieved, and where are we going? Bibliometrics analysis (Open Access) (2022) Energy Reports, 8, pp. 9242-9260. Cited 18 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2022.07.058spa
dcterms.bibliographicCitationBakır, M., Özdemir, E., Akan, Ş., Atalık, Ö. A bibliometric analysis of airport service quality (Open Access) (2022) Journal of Air Transport Management, 104, art. no. 102273. Cited 5 times. www.elsevier.com/inca/publications/store/3/0/4/3/8/ doi: 10.1016/j.jairtraman.2022.102273spa
dcterms.bibliographicCitationAria, M., Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis (Open Access) (2017) Journal of Informetrics, 11 (4), pp. 959-975. Cited 3012 times. http://www.journals.elsevier.com/journal-of-informetrics/ doi: 10.1016/j.joi.2017.08.007spa
dcterms.bibliographicCitationSouley Agbodjan, Y., Wang, J., Cui, Y., Liu, Z., Luo, Z. Bibliometric analysis of zero energy building research, challenges and solutions (Open Access) (2022) Solar Energy, 244, pp. 414-433. Cited 4 times. www.elsevier.com/inca/publications/store/3/2/9/index.htt doi: 10.1016/j.solener.2022.08.061spa
dcterms.bibliographicCitationChoudhary, A.K., Oluikpe, P.I., Harding, J.A., Carrillo, P.M. The needs and benefits of Text Mining applications on Post-Project Reviews (2009) Computers in Industry, 60 (9), pp. 728-740. Cited 56 times. doi: 10.1016/j.compind.2009.05.006spa
dcterms.bibliographicCitationGhazinoory, S., Ameri, F., Farnoodi, S. An application of the text mining approach to select technology centers of excellence (2013) Technological Forecasting and Social Change, 80 (5), pp. 918-931. Cited 18 times. doi: 10.1016/j.techfore.2012.09.001spa
dcterms.bibliographicCitationvan Eck, N.J., Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping (2010) Scientometrics, 84 (2), pp. 523-538. Cited 6782 times. http://www.springerlink.com/content/0138-9130 doi: 10.1007/s11192-009-0146-3spa
dcterms.bibliographicCitationSridhar, A., Ponnuchamy, M., Senthil Kumar, P., Kapoor, A., Xiao, L. Progress in the production of hydrogen energy from food waste: A bibliometric analysis (2022) International Journal of Hydrogen Energy, 47 (62), pp. 26326-26354. Cited 17 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2021.09.258spa
dcterms.bibliographicCitationAu-Yong-Oliveira, M., Pesqueira, A., Sousa, M.J., Dal Mas, F., Soliman, M. The Potential of Big Data Research in HealthCare for Medical Doctors’ Learning (2021) Journal of Medical Systems, 45 (1), art. no. 13. Cited 28 times. https://link.springer.com/journal/10916 doi: 10.1007/s10916-020-01691-7spa
dcterms.bibliographicCitationOlabi, A.G., bahri, A.S., Abdelghafar, A.A., Baroutaji, A., Sayed, E.T., Alami, A.H., Rezk, H., (...), Abdelkareem, M.A. Large-vscale hydrogen production and storage technologies: Current status and future directions (2021) International Journal of Hydrogen Energy, 46 (45), pp. 23498-23528. Cited 152 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2020.10.110spa
dcterms.bibliographicCitationAbe, J.O., Popoola, A.P.I., Ajenifuja, E., Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation (2019) International Journal of Hydrogen Energy, 44 (29), pp. 15072-15086. Cited 1358 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2019.04.068spa
dcterms.bibliographicCitationChamoun, R., Demirci, U.B., Miele, P. Cyclic dehydrogenation-(Re)hydrogenation with hydrogen-storage materials: An overview (2015) Energy Technology, 3 (2), pp. 100-117. Cited 36 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2194-4296 doi: 10.1002/ente.201402136spa
dcterms.bibliographicCitationNejat Veziroglu, T. Conversion to hydrogen economy (2012) Energy Procedia, 29, pp. 654-656. Cited 28 times. http://www.sciencedirect.com/science/journal/18766102 ISBN: 978-162748317-9 doi: 10.1016/j.egypro.2012.09.075spa
dcterms.bibliographicCitationSahaym, U., Norton, M.G. Advances in the application of nanotechnology in enabling a 'hydrogen economy' (2008) Journal of Materials Science, 43 (16), pp. 5395-5429. Cited 205 times. doi: 10.1007/s10853-008-2749-0spa
dcterms.bibliographicCitationZhang, Y.-H., Jia, Z.-C., Yuan, Z.-M., Yang, T., Qi, Y., Zhao, D.-L. Development and Application of Hydrogen Storage (Open Access) (2015) Journal of Iron and Steel Research International, 22 (9), art. no. 30069, pp. 757-770. Cited 92 times. https://rd.springer.com/journal/volumesAndIssues/42243 doi: 10.1016/S1006-706X(15)30069-8spa
dcterms.bibliographicCitationVeziroǧlu, T.N., Şahin, S. 21st Century's energy: Hydrogen energy system (2008) Energy Conversion and Management, 49 (7), pp. 1820-1831. Cited 411 times. doi: 10.1016/j.enconman.2007.08.015spa
dcterms.bibliographicCitationRand, D.A.J. A journey on the electrochemical road to sustainability (2011) Journal of Solid State Electrochemistry, 15 (7-8), pp. 1579-1622. Cited 61 times. doi: 10.1007/s10008-011-1410-zspa
dcterms.bibliographicCitationSahlberg, M. Light-Metal Hydrides for Hydrogen Storage (2009) PhD Thesis. Cited 4 times. Usala Universitet, Usala, Swedenspa
dcterms.bibliographicCitationMarbán, G., Valdés-Solís, T. Towards the hydrogen economy? (2007) International Journal of Hydrogen Energy, 32 (12), pp. 1625-1637. Cited 653 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2006.12.017spa
dcterms.bibliographicCitationProducción, Almacenamiento y Distribución de Hidrógeno. España Available online http://www2.udg.edu/Portals/88/proc_industrials/5%20-%20Otros%20Combustibles-Hidrogeno.pdfspa
dcterms.bibliographicCitationMazzeo, D., Herdem, M.S., Matera, N., Wen, J.Z. Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems (Open Access) (2022) Renewable Energy, 200, pp. 360-378. Cited 26 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2022.09.057spa
dcterms.bibliographicCitationCloete, S., Arnaiz del Pozo, C., Jiménez Álvaro, Á. System-friendly process design: Optimizing blue hydrogen production for future energy systems (2022) Energy, 259, art. no. 124954. Cited 6 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2022.124954spa
dcterms.bibliographicCitation(2016) International Energy Outlook 2016. Volume 0484. Cited 569 times. Available online www.eia.govspa
dcterms.bibliographicCitationBrockway, P.E., Owen, A., Brand-Correa, L.I., Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources (2019) Nature Energy, 4 (7), pp. 612-621. Cited 248 times. www.nature.com/nenergy/ doi: 10.1038/s41560-019-0425-zspa
dcterms.bibliographicCitationRuocco, C., Palma, V., Ricca, A. Kinetics of Oxidative Steam Reforming of Ethanol Over Bimetallic Catalysts Supported on CeO2–SiO2: A Comparative Study (Open Access) (2019) Topics in Catalysis, 62 (5-6), pp. 467-478. Cited 13 times. http://springerlink.metapress.com/content/101754/ doi: 10.1007/s11244-019-01173-2spa
dcterms.bibliographicCitationde Fátima Palhares, D.D., Vieira, L.G.M., Damasceno, J.J.R. Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use (2018) International Journal of Hydrogen Energy, 43 (9), pp. 4265-4275. Cited 60 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2018.01.051spa
dcterms.bibliographicCitationHosseini, S.E., Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development (2016) Renewable and Sustainable Energy Reviews, 57, pp. 850-866. Cited 1269 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2015.12.112spa
dcterms.bibliographicCitationKang, K., Azargohar, R., Dalai, A.K., Wang, H. Hydrogen production from lignin, cellulose and waste biomass via supercritical water gasification: Catalyst activity and process optimization study (2016) Energy Conversion and Management, 117, pp. 528-537. Cited 106 times. doi: 10.1016/j.enconman.2016.03.008spa
dcterms.bibliographicCitationSalhi, B., Wudil, Y.S., Hossain, M.K., Al-Ahmed, A., Al-Sulaiman, F.A. Review of recent developments and persistent challenges in stability of perovskite solar cells (2018) Renewable and Sustainable Energy Reviews, 90, pp. 210-222. Cited 83 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2018.03.058spa
dcterms.bibliographicCitationZhang, H., Su, S., Chen, X., Lin, G., Chen, J. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production (2013) International Journal of Hydrogen Energy, 38 (11), pp. 4298-4307. Cited 34 times. doi: 10.1016/j.ijhydene.2013.01.199spa
dcterms.bibliographicCitationSivabalan, K., Hassan, S., Ya, H., Pasupuleti, J. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply (2021) Journal of Physics: Conference Series, 1831 (1), art. no. 012033. Cited 25 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1831/1/012033spa
dcterms.bibliographicCitationKim, J., Jun, A., Gwon, O., Yoo, S., Liu, M., Shin, J., Lim, T.-H., (...), Kim, G. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production (2018) Nano Energy, 44, pp. 121-126. Cited 172 times. http://www.journals.elsevier.com/nano-energy/ doi: 10.1016/j.nanoen.2017.11.074spa
dcterms.bibliographicCitationSaleem, F., Harris, J., Zhang, K., Harvey, A. Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification – A critical review (2020) Chemical Engineering Journal, 382, art. no. 122761. Cited 82 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.122761spa
dcterms.bibliographicCitationZhang, Y., Li, L., Xu, P., Liu, B., Shuai, Y., Li, B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect (2019) International Journal of Hydrogen Energy, 44 (30), pp. 15727-15736. Cited 81 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2019.01.151spa
dcterms.bibliographicCitationAlmutairi, K., Hosseini Dehshiri, S.S., Hosseini Dehshiri, S.J., Mostafaeipour, A., Jahangiri, M., Techato, K. Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study (2021) Energy Strategy Reviews, 36, art. no. 100684. Cited 41 times. http://www.journals.elsevier.com/energy-strategy-reviews/ doi: 10.1016/j.esr.2021.100684spa
dcterms.bibliographicCitationLi, Z., Guo, P., Han, R., Sun, H. Current status and development trend of wind power generation-based hydrogen production technology (2019) Energy Exploration and Exploitation, 37 (1), pp. 5-25. Cited 33 times. http://eea.sagepub.com/ doi: 10.1177/0144598718787294spa
dcterms.bibliographicCitationLin, R., Cheng, J., Murphy, J.D. Inhibition of thermochemical treatment on biological hydrogen and methane co-production from algae-derived glucose/glycine (2018) Energy Conversion and Management, 158, pp. 201-209. Cited 42 times. doi: 10.1016/j.enconman.2017.12.052spa
dcterms.bibliographicCitationShow, K.-Y., Yan, Y., Ling, M., Ye, G., Li, T., Lee, D.-J. Hydrogen production from algal biomass – Advances, challenges and prospects (2018) Bioresource Technology, 257, pp. 290-300. Cited 116 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2018.02.105spa
dcterms.bibliographicCitationAlves, H.J., Bley Junior, C., Niklevicz, R.R., Frigo, E.P., Frigo, M.S., Coimbra-Araújo, C.H. Overview of hydrogen production technologies from biogas and the applications in fuel cells (Open Access) (2013) International Journal of Hydrogen Energy, 38 (13), pp. 5215-5225. Cited 300 times. doi: 10.1016/j.ijhydene.2013.02.057spa
dcterms.bibliographicCitationEscamilla, A., Sánchez, D., García-Rodríguez, L. Assessment of power-to-power renewable energy storage based on the smart integration of hydrogen and micro gas turbine technologies (2022) International Journal of Hydrogen Energy, 47 (40), pp. 17505-17525. Cited 22 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.03.238spa
dcterms.bibliographicCitationRivard, E., Trudeau, M., Zaghib, K. Hydrogen storage for mobility: A review (Open Access) (2019) Materials, 12 (12), art. no. 1973. Cited 316 times. https://res.mdpi.com/materials/materials-12-01884/article_deploy/materials-12-01973.pdf?filename=&attachment=1 doi: 10.3390/ma12121973spa
dcterms.bibliographicCitationPrabhukhot Prachi, R., Wagh Mahesh, M., Gangal Aneesh, C. A Review on Solid State Hydrogen Storage Material (2016) Adv. Energy Power, 4, pp. 11-22. Cited 82 times.spa
dcterms.bibliographicCitationSakintuna, B., Lamari-Darkrim, F., Hirscher, M. Metal hydride materials for solid hydrogen storage: A review (2007) International Journal of Hydrogen Energy, 32 (9), pp. 1121-1140. Cited 2750 times. doi: 10.1016/j.ijhydene.2006.11.022spa
dcterms.bibliographicCitationWang, H., Zhao, Y., Dong, X., Yang, J., Guo, H., Gong, M. Thermodynamic analysis of low-temperature and high-pressure (cryo-compressed) hydrogen storage processes cooled by mixed-refrigerants (2022) International Journal of Hydrogen Energy, 47 (67), pp. 28932-28944. Cited 5 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.06.193spa
dcterms.bibliographicCitationXu, Z., Zhao, N., Hillmansen, S., Roberts, C., Yan, Y. Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review (Open Access) (2022) Energies, 15 (17), art. no. 6467. Cited 3 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176467spa
dcterms.bibliographicCitationSapre, S., Vyas, M., Pareek, K. Impact of refueling parameters on storage density of compressed hydrogen storage Tank (2021) International Journal of Hydrogen Energy, 46 (31), pp. 16685-16692. Cited 12 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2020.08.136spa
dcterms.bibliographicCitationJain, I.P., Lal, C., Jain, A. Hydrogen storage in Mg: A most promising material (Open Access) (2010) International Journal of Hydrogen Energy, 35 (10), pp. 5133-5144. Cited 908 times. doi: 10.1016/j.ijhydene.2009.08.088spa
dcterms.bibliographicCitationYang, X., Bulushev, D.A., Yang, J., Zhang, Q. New Liquid Chemical Hydrogen Storage Technology (2022) Energies, 15 (17), art. no. 6360. Cited 8 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176360spa
dcterms.bibliographicCitationToghyani, S., Afshari, E., Baniasadi, E., Atyabi, S.A. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer (Open Access) (2018) Electrochimica Acta, 267, pp. 234-245. Cited 62 times. http://www.journals.elsevier.com/electrochimica-acta/ doi: 10.1016/j.electacta.2018.02.078spa
dcterms.bibliographicCitationKoumi Ngoh, S., Njomo, D. An overview of hydrogen gas production from solar energy (2012) Renewable and Sustainable Energy Reviews, 16 (9), pp. 6782-6792. Cited 162 times. doi: 10.1016/j.rser.2012.07.027spa
dcterms.bibliographicCitationJørgensen, C., Ropenus, S. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration. (2008) International Journal of Hydrogen Energy, 33 (20), pp. 5335-5344. Cited 88 times. doi: 10.1016/j.ijhydene.2008.06.037spa
dcterms.bibliographicCitationYang, Y., De La Torre, B., Stewart, K., Lair, L., Phan, N.L., Das, R., Gonzalez, D., (...), Lo, R.C. The scheduling of alkaline water electrolysis for hydrogen production using hybrid energy sources (Open Access) (2022) Energy Conversion and Management, 257, art. no. 115408. Cited 11 times. https://www.journals.elsevier.com/energy-conversion-and-management doi: 10.1016/j.enconman.2022.115408spa
dcterms.bibliographicCitationVidas, L., Castro, R. Recent developments on hydrogen production technologies: State-of-the-art review with a focus on green-electrolysis (Open Access) (2021) Applied Sciences (Switzerland), 11 (23), art. no. 11363. Cited 34 times. https://www.mdpi.com/2076-3417/11/23/11363/pdf doi: 10.3390/app112311363spa
dcterms.bibliographicCitationSpeckmann, F.-W., Bintz, S., Birke, K.P. Influence of rectifiers on the energy demand and gas quality of alkaline electrolysis systems in dynamic operation (2019) Applied Energy, 250, pp. 855-863. Cited 34 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.05.014spa
dcterms.bibliographicCitationNie, J., Chen, Y. Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell (Open Access) (2010) International Journal of Hydrogen Energy, 35 (8), pp. 3183-3197. Cited 87 times. doi: 10.1016/j.ijhydene.2010.01.050spa
dcterms.bibliographicCitationLee, H.-S., Xin, W., Katakojwala, R., Venkata Mohan, S., Tabish, N.M.D. Microbial electrolysis cells for the production of biohydrogen in dark fermentation – A review (Open Access) (2022) Bioresource Technology, 363, art. no. 127934. Cited 11 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2022.127934spa
dcterms.bibliographicCitationCui, Q., Kuang, H.-B., Wu, C.-Y., Li, Y. The changing trend and influencing factors of energy efficiency: The case of nine countries (2014) Energy, 64, pp. 1026-1034. Cited 95 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.11.060spa
dcterms.bibliographicCitationClinch, J.P., Healy, J.D., King, C. (2001) Modelling Improvements in Domestic Energy Efficiency Available online www.elsevier.com/locate/envsoftspa
dcterms.bibliographicCitationBlomberg, J., Henriksson, E., Lundmark, R. Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach (Open Access) (2012) Energy Policy, 42, pp. 569-579. Cited 74 times. doi: 10.1016/j.enpol.2011.12.026spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/en16010087
dc.subject.keywordsWater;spa
dc.subject.keywordsRegenerative Fuel Cells;spa
dc.subject.keywordsAlkaline Waterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.