Mostrar el registro sencillo del ítem
Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil
dc.contributor.author | Carrillo Caballero, Gaylord | |
dc.contributor.author | Cardenas Escorcia, Yulineth | |
dc.contributor.author | Mendoza Castellanos, Luis Sebastián | |
dc.contributor.author | Galindo Noguera, Ana Lisbeth | |
dc.contributor.author | Venturini, Osvaldo José | |
dc.contributor.author | Silva Lora, Electo Eduardo | |
dc.contributor.author | Gutiérrez Velásquez, Elkin I. | |
dc.contributor.author | Alviz Meza, Anibal | |
dc.date.accessioned | 2023-07-21T15:48:12Z | |
dc.date.available | 2023-07-21T15:48:12Z | |
dc.date.issued | 2022-11-04 | |
dc.date.submitted | 2023-07 | |
dc.identifier.citation | This study examined an Organic Rankine Cycle powered by a parabolic trough collector and a two-tank thermal storage system based on the development of a mathematical model, for the conditions of the city of Itajubá in Brazil. First, geometrical optics and heat transfer models of the collector–receiver set were used to determine the thermal equilibrium of the solar thermal collector system and parameters such as the efficiency of the solar field, heat and optical losses, and thermal energy of the outlet fluid. Next, the thermal equilibrium of the Organic Rankine Cycle was found in order to establish its operational parameters. Finally, the behavior of the thermal storage system was analyzed through its modeling. Once the characterization of the storage system was completed, the integrated operation of the proposed system was evaluated. Given Itajubá’s weather conditions, the results indicate that an electricity generation system can be implemented with the Solel UVAC Cermet selective coating for the absorber tube, water as the heat transfer fluid, and R-245fa as the working fluid. Based on the solar irradiation profile (1 March 2019), the parabolic trough collectors provided 63.3% of the energy required by the Organic Rankine Cycle to generate 7.4 kW, while the thermal storage system provided 36.4% of the energy demanded by the power generation block. Additionally, the results demonstrate the main conclusions that the turbine’s efficiency was influenced by parameters such as rotational speed, which is affected by the turbine inlet temperature, which, in turn, depends on the behavior of the solar irradiation profile onsite. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12287 | |
dc.description.abstract | settingsOrder Article Reprints Open AccessArticle Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil by Gaylord Carrillo Caballero 1,2,Yulineth Cardenas Escorcia 3,Luis Sebastián Mendoza Castellanos 4,Ana Lisbeth Galindo Noguera 4,Osvaldo José Venturini 2,Electo Eduardo Silva Lora 2,Elkin I. Gutiérrez Velásquez 5 andAnibal Alviz Meza 6,*ORCID 1 Research Group en Energías Alternativas y Fluidos (EOLITO), Universidad Tecnológica de Bolívar (UTB), Cartagena 130002, Colombia 2 Excellence Group in Thermal Power and Distributed Generation-NEST, Institute of Mechanical Engineering, Universidade Federal de Itajubá, Itajubá 37500-000, Brazil 3 Research Group GIOPEN, Energy Department, Universidad de la Costa (CUC), Barranquilla 080016, Colombia 4 Research Group in Resources, Energy and Sustainability (GIRES), Faculty of Energy Engineering, Universidad Autónoma de Bucaramanga (UNAB), Bucaramanga 680008, Colombia 5 Faculty of Mechanic, Electronics and Biomedical Engineering, Universidad Antonio Nariño, Medellin 050005, Colombia 6 Research Group en Deterioro de Materiales, Transición Energética y Ciencia de datos DANT3, Facultad de Ingeniería, Arquitectura y Urbanismo, Universidad Señor de Sipán, Chiclayo 14002, Peru * Author to whom correspondence should be addressed. Energies 2022, 15(21), 8261; https://doi.org/10.3390/en15218261 Received: 5 October 2022 / Revised: 28 October 2022 / Accepted: 31 October 2022 / Published: 4 November 2022 Download Browse Figures Versions Notes Abstract This study examined an Organic Rankine Cycle powered by a parabolic trough collector and a two-tank thermal storage system based on the development of a mathematical model, for the conditions of the city of Itajubá in Brazil. First, geometrical optics and heat transfer models of the collector–receiver set were used to determine the thermal equilibrium of the solar thermal collector system and parameters such as the efficiency of the solar field, heat and optical losses, and thermal energy of the outlet fluid. Next, the thermal equilibrium of the Organic Rankine Cycle was found in order to establish its operational parameters. Finally, the behavior of the thermal storage system was analyzed through its modeling. Once the characterization of the storage system was completed, the integrated operation of the proposed system was evaluated. Given Itajubá’s weather conditions, the results indicate that an electricity generation system can be implemented with the Solel UVAC Cermet selective coating for the absorber tube, water as the heat transfer fluid, and R-245fa as the working fluid. Based on the solar irradiation profile (1 March 2019), the parabolic trough collectors provided 63.3% of the energy required by the Organic Rankine Cycle to generate 7.4 kW, while the thermal storage system provided 36.4% of the energy demanded by the power generation block. Additionally, the results demonstrate the main conclusions that the turbine’s efficiency was influenced by parameters such as rotational speed, which is affected by the turbine inlet temperature, which, in turn, depends on the behavior of the solar irradiation profile onsite. | spa |
dc.format.extent | 21 páginas | |
dc.format.medium | ||
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Energies, Vol. 15 No. 21 (2022) | spa |
dc.title | Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil | spa |
dcterms.bibliographicCitation | Peter, J. How does climate change affect electricity system planning and optimal allocation of variable renewable energy? (2019) Applied Energy, 252, art. no. 113397. Cited 36 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.113397 | spa |
dcterms.bibliographicCitation | Lin, B., Jia, Z. Is emission trading scheme an opportunity for renewable energy in China? A perspective of ETS revenue redistributions (2020) Applied Energy, 263, art. no. 114605. Cited 55 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2020.114605 | spa |
dcterms.bibliographicCitation | Cuesta, M.A., Castillo-Calzadilla, T., Borges, C.E. A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities (2020) Renewable and Sustainable Energy Reviews, 122, art. no. 109691. Cited 68 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.109691 | spa |
dcterms.bibliographicCitation | Vetter, C., Wiemer, H.-J., Kuhn, D. Comparison of sub- and supercritical Organic Rankine Cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency (2013) Applied Thermal Engineering, 51 (1-2), pp. 871-879. Cited 124 times. doi: 10.1016/j.applthermaleng.2012.10.042 | spa |
dcterms.bibliographicCitation | Wasserbauer, C.A., Glassman, A.J. FORTRAN program for predicting off-design performance of radial-inflow turbines. | spa |
dcterms.bibliographicCitation | Borunda, M., Jaramillo, O.A., Dorantes, R., Reyes, A. Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes (2016) Renewable Energy, 86, pp. 651-663. Cited 87 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2015.08.041 | spa |
dcterms.bibliographicCitation | Quoilin, S. Sustainable Energy Conversion through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar Applications (2011) Ph.D. Thesis. Cited 156 times. University of Liege, Liege, Belgium, Available online https://hdl.handle.net/2268/96436 | spa |
dcterms.bibliographicCitation | He, Y.-L., Mei, D.-H., Tao, W.-Q., Yang, W.-W., Liu, H.-L. Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle (2012) Applied Energy, 97, pp. 630-641. Cited 110 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2012.02.047 | spa |
dcterms.bibliographicCitation | Derbal-Mokrane, H., Amrouche, F., Omari, M.N., Yahmi, I. Hydrogen production through parabolic trough power plant based on the Organic Rankine Cycle implemented in the Algerian Sahara (2021) International Journal of Hydrogen Energy, 46 (65), pp. 32768-32782. Cited 11 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2021.07.135 | spa |
dcterms.bibliographicCitation | Marinheiro, M.M., Coraça, G.M., Cabezas-Gómez, L., Ribatski, G. Detailed transient assessment of a small-scale concentrated solar power plant based on the organic Rankine cycle (2022) Applied Thermal Engineering, 204, art. no. 117959. Cited 4 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2021.117959 | spa |
dcterms.bibliographicCitation | Chacartegui, R., Vigna, L., Becerra, J.A., Verda, V. Analysis of two heat storage integrations for an Organic Rankine Cycle Parabolic trough solar power plant (2016) Energy Conversion and Management, 125, pp. 353-367. Cited 70 times. doi: 10.1016/j.enconman.2016.03.067 | spa |
dcterms.bibliographicCitation | Suresh, N.S., Thirumalai, N.C., Rao, B.S., Ramaswamy, M.A. Methodology for sizing the solar field for parabolic trough technology with thermal storage and hybridization (2014) Solar Energy, 110, pp. 247-259. Cited 38 times. www.elsevier.com/inca/publications/store/3/2/9/index.htt doi: 10.1016/j.solener.2014.09.020 | spa |
dcterms.bibliographicCitation | Catapano, F., Frazzica, A., Freni, A., Manzan, M., Micheli, D., Palomba, V., Sementa, P., (...), Vaglieco, B.M. Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application (2022) Applied Energy, 311, art. no. 118673. Cited 11 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2022.118673 | spa |
dcterms.bibliographicCitation | Ben Khedher, N., Bantan, R.A., Kolsi, L., Omri, M. Performance investigation of a vertically configured LHTES via the combination of nano-enhanced PCM and fins: experimental and numerical approaches (2022) International Communications in Heat and Mass Transfer, 137, art. no. 106246. Cited 20 times. https://www.journals.elsevier.com/international-communications-in-heat-and-mass-transfer doi: 10.1016/j.icheatmasstransfer.2022.106246 | spa |
dcterms.bibliographicCitation | Caballero, G.E.C. Modelagem do Comportamento Integrado de um Sistema de Coletor Cilíndrico Parabólico Operando com Ciclo Rankine Orgânico e Armazenamento Térmico de dois Tanques (2018) Ph.D. Thesis Universidade Federal De Itajubá, Itajuba, Brazil | spa |
dcterms.bibliographicCitation | Hachicha, A.A., Rodríguez, I., Capdevila, R., Oliva, A. Heat transfer analysis and numerical simulation of a parabolic trough solar collector (2013) Applied Energy, 111, pp. 581-592. Cited 210 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2013.04.067 | spa |
dcterms.bibliographicCitation | Bell, I.H., Wronski, J., Quoilin, S., Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop (2014) Industrial and Engineering Chemistry Research, 53 (6), pp. 2498-2508. Cited 1357 times. doi: 10.1021/ie4033999 | spa |
dcterms.bibliographicCitation | (1997) SYLTHERM 800—Heat Transfer Fluid 800. Product Technical Data. Cited 49 times. Dow, Midland, MI, USA | spa |
dcterms.bibliographicCitation | (1997) DOWTHERM A—Heat Transfer Fluid. Product Technical Data. Cited 49 times. Dow, Midland, MI, USA | spa |
dcterms.bibliographicCitation | (1997) DOWTHERM Q—Heat Transfer Fluid. Product Technical Data. Cited 49 times. Dow, Midland, MI, USA | spa |
dcterms.bibliographicCitation | Cheng, Z.-D., He, Y.-L., Qiu, Y. A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends (2015) Renewable Energy, 74, pp. 139-147. Cited 46 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2014.07.060 | spa |
dcterms.bibliographicCitation | Reddy, K.S., Satyanarayana, G.V. Numerical Study of Porous Finned Receiver for Solar Parabolic Trough Concentrator (2008) Eng. Appl. Comput. Fluid Mech, 2, pp. 172-184. Cited 88 times. | spa |
dcterms.bibliographicCitation | Ravi Kumar, K., Reddy, K.S. Thermal analysis of solar parabolic trough with porous disc receiver (2009) Applied Energy, 86 (9), pp. 1804-1812. Cited 191 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2008.11.007 | spa |
dcterms.bibliographicCitation | Al-Shemmeri, T. Engineering Thermodynamics (1958) Nature, 181, p. 1028. Cited 2 times. | spa |
dcterms.bibliographicCitation | Lu, J., Ding, J., Yang, J., Yang, X. Nonuniform heat transfer model and performance of parabolic trough solar receiver (2013) Energy, 59, pp. 666-675. Cited 40 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.07.052 | spa |
dcterms.bibliographicCitation | Cengel, Y. (2006) Heat and Mass Transfer a Practical Approach. Cited 3068 times. 3rd ed., McGraw Hill Book Company, New York, NY, USA | spa |
dcterms.bibliographicCitation | Dudiey, V.E., Kolb, G.J., Sloan, M., Kearney, D. (1994) SEGS LS 2 Solar Collector Rest Result. Technical Report. SAND94-1884 Available online https://www.osti.gov/biblio/70756 | spa |
dcterms.bibliographicCitation | Good, P. Heat Transfer Modeling of a Solar Parabolic Trough Receiver by Direct Simultion Monte Carlo Method (2011) Master’s Thesis Swiss Federal Institute of Technology, Zurich, Switzerland | spa |
dcterms.bibliographicCitation | Forristall, R. (2003) Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. NREL/TP-550-34169. Cited 602 times. 1, October, Available online https://www.nrel.gov/docs/fy04osti/34169.pdf | spa |
dcterms.bibliographicCitation | Wagner, M.J., Gilman, P. Technical Manual for the SAM Physical Trough Model. Technical Report. NREL/TP-5500-51825 Available online https://www.osti.gov/biblio/1016437/ | spa |
dcterms.bibliographicCitation | Vaja, I., Gambarotta, A. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs) (Open Access) (2010) Energy, 35 (2), pp. 1084-1093. Cited 397 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2009.06.001 | spa |
dcterms.bibliographicCitation | Lukawski, M. Design and Optimization of Standardized Organic Rankine Cycle Power Plant for European Conditions (2009) Master’s Thesis. Cited 34 times. School for Renewable Energy Science, Akureyri, Iceland | spa |
dcterms.bibliographicCitation | Khaled, A. Technical and Economic Performance of Parabolic trough in Jordan (2012) Master’s Thesis. Cited 7 times. Cairo University, Cairo, Egypt | spa |
dcterms.bibliographicCitation | Muhammad, U., Imran, M., Lee, D.H., Park, B.S. Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam (2015) Energy Conversion and Management, 103, pp. 1089-1100. Cited 125 times. doi: 10.1016/j.enconman.2015.07.045 | spa |
dcterms.bibliographicCitation | Zaversky, F., García-Barberena, J., Sánchez, M., Astrain, D. Transient molten salt two-tank thermal storage modeling for CSP performance simulations (2013) Solar Energy, 93, pp. 294-311. Cited 100 times. doi: 10.1016/j.solener.2013.02.034 | spa |
dcterms.bibliographicCitation | Quoilin, S., Orosz, M., Hemond, H., Lemort, V. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation (Open Access) (2011) Solar Energy, 85 (5), pp. 955-966. Cited 324 times. doi: 10.1016/j.solener.2011.02.010 | spa |
dcterms.bibliographicCitation | Guarino, S., Buscemi, A., Ciulla, G., Bonomolo, M., Lo Brano, V. A dish-stirling solar concentrator coupled to a seasonal thermal energy storage system in the southern mediterranean basin: A cogenerative layout hypothesis (Open Access) (2020) Energy Conversion and Management, 222, art. no. 113228. Cited 17 times. https://www.journals.elsevier.com/energy-conversion-and-management doi: 10.1016/j.enconman.2020.113228 | spa |
dcterms.bibliographicCitation | Sadeghi, S., Ghandehariun, S., Rezaie, B. Energy and exergy analyses of a solar-based multi-generation energy plant integrated with heat recovery and thermal energy storage systems (2021) Applied Thermal Engineering, 188, art. no. 116629. Cited 23 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2021.116629 | spa |
dcterms.bibliographicCitation | Battisti, F.G., de Araujo Passos, L.A., da Silva, A.K. Performance mapping of packed-bed thermal energy storage systems for concentrating solar-powered plants using supercritical carbon dioxide (2021) Applied Thermal Engineering, Part 1 183, art. no. 116032. Cited 16 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2020.116032 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.3390/en15218261 | |
dc.subject.keywords | Organic Rankine cycle | spa |
dc.subject.keywords | Parabolic trough | spa |
dc.subject.keywords | Renewable energy | spa |
dc.subject.keywords | Solar energy | spa |
dc.subject.keywords | thermal storage | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.