Mostrar el registro sencillo del ítem

dc.contributor.authorPaternina-Verona, Duban A.
dc.contributor.authorCoronado-Hernández, Oscar E.
dc.contributor.authorEspinoza-Román, Héctor G.
dc.contributor.authorBesharat, Mohsen
dc.contributor.authorFuertes-Miquel, Vicente S
dc.contributor.authorRamos, Helena M
dc.date.accessioned2023-07-21T15:42:47Z
dc.date.available2023-07-21T15:42:47Z
dc.date.issued2022-11-07
dc.date.submitted2023-07
dc.identifier.citationPaternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events. Sustainability 2022, 14, 14600. https://doi.org/10.3390/su142114600spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12276
dc.description.abstractAir valves operate as protection devices in pipelines during drainage processes in order to mitigate vacuum pressures and control the transient flows. Currently, different authors have proposed one-dimensional models to predict the behaviour of orifices during filling and draining events, which offer good numerical results. However, the three-dimensional dynamic behaviour of air-admission orifices during drainage processes has not been studied in depth in the literature. In this research, the effects of air inflow on an orifice installed in a single pipe during drainage events are analysed using a three-dimensional computational fluid dynamics model by testing orifices with diameters of 1.5 and 3.0 mm. This model was validated with different experimental measurements associated to the vacuum pressure, obtaining good fits. The three-dimensional model predicts additional information associated to the aerodynamic effects that occur during the air-admission processes, which is studied. Subsonic flows are observed in different orifices with Mach numbers between 0.18 and 0.30. In addition, it is shown that the larger-diameter orifice ensures a more effective airflow control compared to the smaller-diameter orificespa
dc.format.extent14 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSustainability (Switzerland) - Vol. 14 No. 21 (2022)spa
dc.titleThree-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage eventsspa
dcterms.bibliographicCitationMartin, C.S. Entrapped air in pipelines Proceedings of the Second International Conference on Pressure Surges. Cited 148 times. London, UK, 22–24 September 1976spa
dcterms.bibliographicCitationVasconcelos, J.G., Wright, S.J. Experimental investigation of surges in a stormwater storage tunnel (2005) Journal of Hydraulic Engineering, 131 (10), pp. 853-861. Cited 66 times. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853)spa
dcterms.bibliographicCitationChosie, C.D., Hatcher, T.M., Vasconcelos, J.G. Experimental and Numerical Investigation on the Motion of Discrete Air Pockets in Pressurized Water Flows (2014) Journal of Hydraulic Engineering, 140 (8), art. no. 04014038. Cited 20 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0000898spa
dcterms.bibliographicCitation(2016) Air Release, Air/Vacuum Valves and Combination Air Valves (M51). Cited 4 times. American Water Works Association, Denver, CO, USAspa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188spa
dcterms.bibliographicCitationBalacco, G., Apollonio, C., Piccinni, A.F. Experimental analysis of air valve behaviour during hydraulic transients (2015) Journal of Applied Water Engineering and Research, 3 (1), pp. 3-11. Cited 25 times. tandfonline.com/toc/tjaw20/current doi: 10.1080/23249676.2015.1032374spa
dcterms.bibliographicCitationApollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F. Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water (Switzerland), 8 (1), art. no. 25. Cited 36 times. http://www.mdpi.com/2073-4441/8/1/25/pdf doi: 10.3390/w8010025spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (Open Access) (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 35 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098spa
dcterms.bibliographicCitationRomero, G., Fuertes-Miquel, V.S., Coronado-Hernández, Ó.E., Ponz-Carcelén, R., Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations (2020) Urban Water Journal, 17 (6), pp. 568-575. Cited 7 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2020.1800762spa
dcterms.bibliographicCitationMartin, C., Lee, N.H. Rapid expulsion of entrapped air through an orifice (2000) BHR Group Conference Series Publication, 39, pp. 125-132. Cited 28 times. Professional Engineering Publishing, Bury St. Edmunds, UKspa
dcterms.bibliographicCitationZhou, F., Hicks, F.E., Steffler, P.M. Transient flow in a rapidly filling horizontal pipe containing trapped air (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634. Cited 200 times. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)spa
dcterms.bibliographicCitationZhou, F., Hicks, F., Steffler, P. Analysis of effects of air pocket on hydraulic failure of urban drainage infrastructure (2004) Canadian Journal of Civil Engineering, 31 (1), pp. 86-94. Cited 49 times. doi: 10.1139/l03-077spa
dcterms.bibliographicCitationDe Martino, G., Fontana, N., Giugni, M. Transient flow caused by air expulsion through an orifice (2008) Journal of Hydraulic Engineering, 134 (9), pp. 1395-1399. Cited 45 times. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1395)spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves (Open Access) (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061. Cited 23 times. http://www.nrcresearchpress.com/loi/cjce doi: 10.1139/cjce-2016-0209spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Ramos, H.M. Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis (2019) Water (Switzerland), 11 (9), art. no. 1814. Cited 17 times. https://res.mdpi.com/d_attachment/water/water-11-01814/article_deploy/water-11-01814.pdf doi: 10.3390/w11091814spa
dcterms.bibliographicCitationZhou, L., Pan, T., Wang, H., Liu, D., Wang, P. Rapid air expulsion through an orifice in a vertical water pipe (2019) Journal of Hydraulic Research, 57 (3), pp. 307-317. Cited 20 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1475427spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (Open Access) (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465spa
dcterms.bibliographicCitationGarcía-Todolí, S., Iglesias-Rey, P.L., Mora-Meliá, D., Martínez-Solano, F.J., Fuertes-Miquel, V.S. Computational determination of air valves capacity using CFD techniques (Open Access) (2018) Water (Switzerland), 10 (10), art. no. 1433. Cited 13 times. https://www.mdpi.com/2073-4441/10/10/1433/pdf doi: 10.3390/w10101433spa
dcterms.bibliographicCitationAguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (Open Access) (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104spa
dcterms.bibliographicCitationAguirre-Mendoza, A.M., Paternina-Verona, D.A., Oyuela, S., Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., (...), Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines (Open Access) (2022) Water (Switzerland), 14 (6), art. no. 888. Cited 6 times. https://www.mdpi.com/2073-4441/14/6/888/pdf doi: 10.3390/w14060888spa
dcterms.bibliographicCitationPaternina-Verona, D.A., Coronado-Hernández, O.E., Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM (Open Access) (2022) Urban Water Journal, 19 (6), pp. 569-578. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2022.2050929spa
dcterms.bibliographicCitationOyinloye, T.M., Yoon, W.B. Application of computational fluid dynamics (Cfd) simulation for the effective design of food 3d printing (a review) (Open Access) (2021) Processes, 9 (11), art. no. 1867. Cited 14 times. https://www.mdpi.com/2227-9717/9/11/1867/pdf doi: 10.3390/pr9111867spa
dcterms.bibliographicCitationSharma, P., Sahoo, B.B., Said, Z., Hadiyanto, H., Nguyen, X.P., Nižetić, S., Huang, Z., (...), Li, C. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas (Open Access) (2023) International Journal of Hydrogen Energy, 48 (18), pp. 6738-6760. Cited 35 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.04.152spa
dcterms.bibliographicCitationSaid, Z., Rahman, S., Sharma, P., Amine Hachicha, A., Issa, S. Performance characterization of a solar-powered shell and tube heat exchanger utilizing MWCNTs/water-based nanofluids: An experimental, numerical, and artificial intelligence approach (2022) Applied Thermal Engineering, 212, art. no. 118633. Cited 27 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2022.118633spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (Open Access) (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819spa
dcterms.bibliographicCitationHurtado-Misal, A.D., Hernández-Sanjuan, D., Coronado-Hernández, O.E., Espinoza-Román, H., Fuertes-Miquel, V.S. Analysis of sub-atmospheric pressures during emptying of an irregular pipeline without an air valve using a 2d cfd model (Open Access) (2021) Water (Switzerland), 13 (18), art. no. 2526. Cited 8 times. https://www.mdpi.com/2073-4441/13/18/2526/pdf doi: 10.3390/w13182526spa
dcterms.bibliographicCitationGreenshields, C., Weller, H. (2022) Notes on Computational Fluid Dynamics: General Principles. Cited 35 times. CFD Direct Ltd., Reading, UKspa
dcterms.bibliographicCitationMenter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (Open Access) (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15770 times. doi: 10.2514/3.12149spa
dcterms.bibliographicCitationMenter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective (Open Access) (2009) International Journal of Computational Fluid Dynamics, 23 (4), pp. 305-316. Cited 682 times. doi: 10.1080/10618560902773387spa
dcterms.bibliographicCitationBesharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M. Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702. Cited 30 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-016-1310-1spa
dcterms.bibliographicCitationZhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline (2018) Journal of Hydraulic Engineering, 144 (8), art. no. 04018045. Cited 49 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001491spa
dcterms.bibliographicCitationOberkampf, W.L., Trucano, T.G. Verification and validation in computational fluid dynamics (Open Access) (2002) Progress in Aerospace Sciences, 38 (3), pp. 209-272. Cited 819 times. doi: 10.1016/S0376-0421(02)00005-2spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/su142114600
dc.subject.keywordsAir inflowspa
dc.subject.keywordsOrificespa
dc.subject.keywordsThree-dimensional modelspa
dc.subject.keywordsVacuum pressurespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.