Mostrar el registro sencillo del ítem
Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events
dc.contributor.author | Paternina-Verona, Duban A. | |
dc.contributor.author | Coronado-Hernández, Oscar E. | |
dc.contributor.author | Espinoza-Román, Héctor G. | |
dc.contributor.author | Besharat, Mohsen | |
dc.contributor.author | Fuertes-Miquel, Vicente S | |
dc.contributor.author | Ramos, Helena M | |
dc.date.accessioned | 2023-07-21T15:42:47Z | |
dc.date.available | 2023-07-21T15:42:47Z | |
dc.date.issued | 2022-11-07 | |
dc.date.submitted | 2023-07 | |
dc.identifier.citation | Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Espinoza-Román, H.G.; Besharat, M.; Fuertes-Miquel, V.S.; Ramos, H.M. Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events. Sustainability 2022, 14, 14600. https://doi.org/10.3390/su142114600 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12276 | |
dc.description.abstract | Air valves operate as protection devices in pipelines during drainage processes in order to mitigate vacuum pressures and control the transient flows. Currently, different authors have proposed one-dimensional models to predict the behaviour of orifices during filling and draining events, which offer good numerical results. However, the three-dimensional dynamic behaviour of air-admission orifices during drainage processes has not been studied in depth in the literature. In this research, the effects of air inflow on an orifice installed in a single pipe during drainage events are analysed using a three-dimensional computational fluid dynamics model by testing orifices with diameters of 1.5 and 3.0 mm. This model was validated with different experimental measurements associated to the vacuum pressure, obtaining good fits. The three-dimensional model predicts additional information associated to the aerodynamic effects that occur during the air-admission processes, which is studied. Subsonic flows are observed in different orifices with Mach numbers between 0.18 and 0.30. In addition, it is shown that the larger-diameter orifice ensures a more effective airflow control compared to the smaller-diameter orifice | spa |
dc.format.extent | 14 páginas | |
dc.format.medium | ||
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Sustainability (Switzerland) - Vol. 14 No. 21 (2022) | spa |
dc.title | Three-dimensional analysis of air-admission orifices in pipelines during hydraulic drainage events | spa |
dcterms.bibliographicCitation | Martin, C.S. Entrapped air in pipelines Proceedings of the Second International Conference on Pressure Surges. Cited 148 times. London, UK, 22–24 September 1976 | spa |
dcterms.bibliographicCitation | Vasconcelos, J.G., Wright, S.J. Experimental investigation of surges in a stormwater storage tunnel (2005) Journal of Hydraulic Engineering, 131 (10), pp. 853-861. Cited 66 times. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853) | spa |
dcterms.bibliographicCitation | Chosie, C.D., Hatcher, T.M., Vasconcelos, J.G. Experimental and Numerical Investigation on the Motion of Discrete Air Pockets in Pressurized Water Flows (2014) Journal of Hydraulic Engineering, 140 (8), art. no. 04014038. Cited 20 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0000898 | spa |
dcterms.bibliographicCitation | (2016) Air Release, Air/Vacuum Valves and Combination Air Valves (M51). Cited 4 times. American Water Works Association, Denver, CO, USA | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188 | spa |
dcterms.bibliographicCitation | Balacco, G., Apollonio, C., Piccinni, A.F. Experimental analysis of air valve behaviour during hydraulic transients (2015) Journal of Applied Water Engineering and Research, 3 (1), pp. 3-11. Cited 25 times. tandfonline.com/toc/tjaw20/current doi: 10.1080/23249676.2015.1032374 | spa |
dcterms.bibliographicCitation | Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F. Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines (2016) Water (Switzerland), 8 (1), art. no. 25. Cited 36 times. http://www.mdpi.com/2073-4441/8/1/25/pdf doi: 10.3390/w8010025 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (Open Access) (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 35 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098 | spa |
dcterms.bibliographicCitation | Romero, G., Fuertes-Miquel, V.S., Coronado-Hernández, Ó.E., Ponz-Carcelén, R., Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations (2020) Urban Water Journal, 17 (6), pp. 568-575. Cited 7 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2020.1800762 | spa |
dcterms.bibliographicCitation | Martin, C., Lee, N.H. Rapid expulsion of entrapped air through an orifice (2000) BHR Group Conference Series Publication, 39, pp. 125-132. Cited 28 times. Professional Engineering Publishing, Bury St. Edmunds, UK | spa |
dcterms.bibliographicCitation | Zhou, F., Hicks, F.E., Steffler, P.M. Transient flow in a rapidly filling horizontal pipe containing trapped air (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634. Cited 200 times. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625) | spa |
dcterms.bibliographicCitation | Zhou, F., Hicks, F., Steffler, P. Analysis of effects of air pocket on hydraulic failure of urban drainage infrastructure (2004) Canadian Journal of Civil Engineering, 31 (1), pp. 86-94. Cited 49 times. doi: 10.1139/l03-077 | spa |
dcterms.bibliographicCitation | De Martino, G., Fontana, N., Giugni, M. Transient flow caused by air expulsion through an orifice (2008) Journal of Hydraulic Engineering, 134 (9), pp. 1395-1399. Cited 45 times. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1395) | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves (Open Access) (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061. Cited 23 times. http://www.nrcresearchpress.com/loi/cjce doi: 10.1139/cjce-2016-0209 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Ramos, H.M. Effect of a commercial air valve on the rapid filling of a single pipeline: A numerical and experimental analysis (2019) Water (Switzerland), 11 (9), art. no. 1814. Cited 17 times. https://res.mdpi.com/d_attachment/water/water-11-01814/article_deploy/water-11-01814.pdf doi: 10.3390/w11091814 | spa |
dcterms.bibliographicCitation | Zhou, L., Pan, T., Wang, H., Liu, D., Wang, P. Rapid air expulsion through an orifice in a vertical water pipe (2019) Journal of Hydraulic Research, 57 (3), pp. 307-317. Cited 20 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1475427 | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (Open Access) (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465 | spa |
dcterms.bibliographicCitation | García-Todolí, S., Iglesias-Rey, P.L., Mora-Meliá, D., Martínez-Solano, F.J., Fuertes-Miquel, V.S. Computational determination of air valves capacity using CFD techniques (Open Access) (2018) Water (Switzerland), 10 (10), art. no. 1433. Cited 13 times. https://www.mdpi.com/2073-4441/10/10/1433/pdf doi: 10.3390/w10101433 | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (Open Access) (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104 | spa |
dcterms.bibliographicCitation | Aguirre-Mendoza, A.M., Paternina-Verona, D.A., Oyuela, S., Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., (...), Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines (Open Access) (2022) Water (Switzerland), 14 (6), art. no. 888. Cited 6 times. https://www.mdpi.com/2073-4441/14/6/888/pdf doi: 10.3390/w14060888 | spa |
dcterms.bibliographicCitation | Paternina-Verona, D.A., Coronado-Hernández, O.E., Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM (Open Access) (2022) Urban Water Journal, 19 (6), pp. 569-578. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2022.2050929 | spa |
dcterms.bibliographicCitation | Oyinloye, T.M., Yoon, W.B. Application of computational fluid dynamics (Cfd) simulation for the effective design of food 3d printing (a review) (Open Access) (2021) Processes, 9 (11), art. no. 1867. Cited 14 times. https://www.mdpi.com/2227-9717/9/11/1867/pdf doi: 10.3390/pr9111867 | spa |
dcterms.bibliographicCitation | Sharma, P., Sahoo, B.B., Said, Z., Hadiyanto, H., Nguyen, X.P., Nižetić, S., Huang, Z., (...), Li, C. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas (Open Access) (2023) International Journal of Hydrogen Energy, 48 (18), pp. 6738-6760. Cited 35 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2022.04.152 | spa |
dcterms.bibliographicCitation | Said, Z., Rahman, S., Sharma, P., Amine Hachicha, A., Issa, S. Performance characterization of a solar-powered shell and tube heat exchanger utilizing MWCNTs/water-based nanofluids: An experimental, numerical, and artificial intelligence approach (2022) Applied Thermal Engineering, 212, art. no. 118633. Cited 27 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2022.118633 | spa |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (Open Access) (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711 | spa |
dcterms.bibliographicCitation | Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819 | spa |
dcterms.bibliographicCitation | Hurtado-Misal, A.D., Hernández-Sanjuan, D., Coronado-Hernández, O.E., Espinoza-Román, H., Fuertes-Miquel, V.S. Analysis of sub-atmospheric pressures during emptying of an irregular pipeline without an air valve using a 2d cfd model (Open Access) (2021) Water (Switzerland), 13 (18), art. no. 2526. Cited 8 times. https://www.mdpi.com/2073-4441/13/18/2526/pdf doi: 10.3390/w13182526 | spa |
dcterms.bibliographicCitation | Greenshields, C., Weller, H. (2022) Notes on Computational Fluid Dynamics: General Principles. Cited 35 times. CFD Direct Ltd., Reading, UK | spa |
dcterms.bibliographicCitation | Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (Open Access) (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15770 times. doi: 10.2514/3.12149 | spa |
dcterms.bibliographicCitation | Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective (Open Access) (2009) International Journal of Computational Fluid Dynamics, 23 (4), pp. 305-316. Cited 682 times. doi: 10.1080/10618560902773387 | spa |
dcterms.bibliographicCitation | Besharat, M., Tarinejad, R., Aalami, M.T., Ramos, H.M. Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis (2016) Water Resources Management, 30 (8), pp. 2687-2702. Cited 30 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-016-1310-1 | spa |
dcterms.bibliographicCitation | Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline (2018) Journal of Hydraulic Engineering, 144 (8), art. no. 04018045. Cited 49 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001491 | spa |
dcterms.bibliographicCitation | Oberkampf, W.L., Trucano, T.G. Verification and validation in computational fluid dynamics (Open Access) (2002) Progress in Aerospace Sciences, 38 (3), pp. 209-272. Cited 819 times. doi: 10.1016/S0376-0421(02)00005-2 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.3390/su142114600 | |
dc.subject.keywords | Air inflow | spa |
dc.subject.keywords | Orifice | spa |
dc.subject.keywords | Three-dimensional model | spa |
dc.subject.keywords | Vacuum pressure | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.