Mostrar el registro sencillo del ítem

dc.contributor.authorPaternina-Verona, Duban A
dc.contributor.authorCoronado-Hernández, Oscar E
dc.contributor.authorAguirre-Mendoza, Andres M.
dc.contributor.authorEspinoza-Román, Héctor G
dc.contributor.authorFuertes-Miquel, Vicente S
dc.date.accessioned2023-07-21T15:39:49Z
dc.date.available2023-07-21T15:39:49Z
dc.date.issued2023-04-01
dc.date.submitted2023-07
dc.identifier.citationPaternina-Verona, D.A., Coronado-Hernández, O.E., Aguirre-Mendoza, A.M. , Espinoza-Román, H.G., Fuertes-Miquel, V.S. Three-Dimensional Simulation of Transient Flows during the Emptying of Pipes with Entrapped Air (2023) Journal of Hydraulic Engineering, 149 (4), art. no. 04023007. DOI: 10.1061/JHEND8.HYENG-13302spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12272
dc.description.abstractTwo-and three-dimensional analyses of transient flows considering the air-water interaction have been a challenge for researchers due to the complexity in the numerical resolution of the multiphase during emptying in pressurized water pipelines. The air-water dynamic interaction of emptying processes can be analyzed using thermodynamic and hydraulic laws. There is a lack in the current literature regarding the analysis of those phenomena using 3D models. In this research, several simulations were performed to study the complex details of two-phase flows. A 3D model was proposed to represent the emptying process in a single pipeline, considering a PVoF model and two-equation turbulence model. The model was numerically validated through 12 experimental tests and mesh sensitivity analysis. The pressure pulses of the air pockets were evaluated and compared with the experimental results and existing mathematical models, showing how the 3D models are useful for capturing more detailed information, such as pressure and velocity patterns of discrete air pockets, distribution of air and water velocity contours, and the exploration of temperature changes for an air pocket expansion.spa
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Hydraulic Engineering - Vol. 149 No. 4 (2023)spa
dc.titleThree-dimensional simulation of transient flows during the emptying of pipes with entrapped airspa
dcterms.bibliographicCitationAguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104spa
dcterms.bibliographicCitationAguirre-Mendoza, A.M., Paternina-Verona, D.A., Oyuela, S., Coronado-Hernández, O.E., Besharat, M., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., (...), Ramos, H.M. Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines (Open Access) (2022) Water (Switzerland), 14 (6), art. no. 888. Cited 6 times. https://www.mdpi.com/2073-4441/14/6/888/pdf doi: 10.3390/w14060888spa
dcterms.bibliographicCitation(2016) Air Release, Air/Vacuum Valves and Combination Air Valves (M51). Cited 4 times. AWWA (American Water Works Association). Denver: AWWA.spa
dcterms.bibliographicCitationBaines, W.D. Air cavities as gravity currents on slope (1991) Journal of Hydraulic Engineering, 117 (12), pp. 1600-1615. Cited 24 times. doi: 10.1061/(ASCE)0733-9429(1991)117:12(1600)spa
dcterms.bibliographicCitation(2021) Bentley OpenFlows HAMMER CONNECT Edition Help Bentley. Exton, PA: Bentley.spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711spa
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819spa
dcterms.bibliographicCitationBombardelli, F.A., Hirt, C.W., Garcia, M.H. Computations of curved free surface water flow on spiral concentratorsa (2001) Journal of Hydraulic Engineering, 127 (7), pp. 627-631. Cited 27 times. doi: 10.1061/(ASCE)0733-9429(2001)127:7(629)spa
dcterms.bibliographicCitationChosie, C.D., Hatcher, T.M., Vasconcelos, J.G. Experimental and Numerical Investigation on the Motion of Discrete Air Pockets in Pressurized Water Flows (2014) Journal of Hydraulic Engineering, 140 (8), art. no. 04014038. Cited 20 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0000898spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 35 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Subatmospheric pressure in a water draining pipeline with an air pocket (2018) Urban Water Journal, 15 (4), pp. 346-352. Cited 21 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1475578spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J. Rigid water column model for simulating the emptying process in a pipeline using pressurized air (2018) Journal of Hydraulic Engineering, 144 (4), art. no. 06018004. Cited 15 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001446spa
dcterms.bibliographicCitationCoronado-Hernández, Ó.E. (2019) Transient Phenomena during the Emptying Process of Water in Pressurized Pipelines. Cited 4 times. Ph.D.Thesis, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València.spa
dcterms.bibliographicCitationFang, H., Zhou, L., Cao, Y., Cai, F., Liu, D. 3D CFD simulations of air-water interaction in T-junction pipes of urban stormwater drainage system (2022) Urban Water Journal, 19 (1), pp. 74-86. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2021.1955282spa
dcterms.bibliographicCitationFuertes, V. (2001) Hydraulic Transients with Entrapped Air Pockets. Cited 17 times. Ph.D.Thesis, Dept. of Hydraulic Engineering, Polytechnic Univ. of Valencia.spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G. Numerical modelling of pipelines with air pockets and air valves (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061. Cited 23 times. http://www.nrcresearchpress.com/loi/cjce doi: 10.1139/cjce-2016-0209spa
dcterms.bibliographicCitationGreenshields, C., Weller, H. (2022) Notes on Computational Fluid Dynamics: General Principles. Cited 35 times. Reading, UK: Computational Fluid Dynamics Direct.spa
dcterms.bibliographicCitationHirt, C.W., Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries (Open Access) (1981) Journal of Computational Physics, 39 (1), pp. 201-225. Cited 12461 times. doi: 10.1016/0021-9991(81)90145-5spa
dcterms.bibliographicCitationHurtado-Misal, A.D., Hernández-Sanjuan, D., Coronado-Hernández, O.E., Espinoza-Román, H., Fuertes-Miquel, V.S. Analysis of sub-atmospheric pressures during emptying of an irregular pipeline without an air valve using a 2d cfd model (2021) Water (Switzerland), 13 (18), art. no. 2526. Cited 8 times. https://www.mdpi.com/2073-4441/13/18/2526/pdf doi: 10.3390/w13182526spa
dcterms.bibliographicCitationIssa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting (1986) Journal of Computational Physics, 62 (1), pp. 40-65. Cited 4215 times. doi: 10.1016/0021-9991(86)90099-9spa
dcterms.bibliographicCitation(2018) Allievi Users Manual ITA (Instituto Tecnológico del Agua). Valencia, Spain: Polytechnic Univ. of Valencia.spa
dcterms.bibliographicCitationJasak, H., Weller, H. (1995) Interface Tracking Capabilities of the Inter-gamma Differencing Scheme. Cited 43 times. London: Imperial College of Science, Technology and Medicine.spa
dcterms.bibliographicCitationLaanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., (...), van't Westende, J.M.C. Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. Cited 44 times. doi: 10.1061/(ASCE)HY.1943-7900.0000631spa
dcterms.bibliographicCitationLaanearu, J., Hou, Q., Annus, I., Tijsseling, A.S. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air (Open Access) (2015) Proceedings of the Estonian Academy of Sciences, 64 (1), pp. 8-16. Cited 16 times. http://www.eap.ee/public/proceedings_pdf/2015/issue_1/Proc-2015-1-17-21.pdf doi: 10.3176/proc.2015.1.02spa
dcterms.bibliographicCitationLaunder, B.E., Spalding, D.B. (1983) Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pp. 96-116. Cited 444 times. The numerical computation of turbulent flows." In, Amsterdam, Netherlands: Elsevier.spa
dcterms.bibliographicCitationLiou, C.P., Hunt, W.A. Filling of pipelines with undulating elevation profiles (1996) Journal of Hydraulic Engineering, 122 (10), pp. 534-539. Cited 83 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)0733-9429(1996)122:10(534)spa
dcterms.bibliographicCitationMartin, C.S. (1976) Entrapped Air in Pipelines In Proc. 2nd Int. Conf. on Pressure Surges. Bedford, UK: British Hydromechanics Research Association Fluid Engineering.spa
dcterms.bibliographicCitationMartins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (Open Access) (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046spa
dcterms.bibliographicCitationMenter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15770 times. doi: 10.2514/3.12149spa
dcterms.bibliographicCitationMenter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective (2009) International Journal of Computational Fluid Dynamics, 23 (4), pp. 305-316. Cited 682 times. doi: 10.1080/10618560902773387spa
dcterms.bibliographicCitationMenter, F.R., Esch, T. (2001) Elements of Industrial Heat Transfer Predictions In Proc. 16th Brazilian Congress of Mechanical Engineering (COBEM). Rio de Janeiro, Brazil: Brazilian Society of Mechanical Sciences.spa
dcterms.bibliographicCitationMuralha, A., Melo, J.F., Ramos, H.M. Assessment of CFD solvers and turbulent models for water free jets in spillways (Open Access) (2020) Fluids, 5 (3), art. no. 100. Cited 7 times. https://www.mdpi.com/2311-5521/5/3/104 doi: 10.3390/fluids5030104spa
dcterms.bibliographicCitationPaternina-Verona, D.A., Coronado-Hernández, O.E., Fuertes-Miquel, V.S. Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM (Open Access) (2022) Urban Water Journal, 19 (6), pp. 569-578. Cited 3 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2022.2050929spa
dcterms.bibliographicCitationPozos, O., Gonzalez, C.A., Giesecke, J., Marx, W., Rodal, E.A. Air entrapped in gravity pipeline systems (Open Access) (2010) Journal of Hydraulic Research, 48 (3), pp. 338-347. Cited 40 times. doi: 10.1080/00221686.2010.481839spa
dcterms.bibliographicCitationRomero, G., Fuertes-Miquel, V.S., Coronado-Hernández, Ó.E., Ponz-Carcelén, R., Biel-Sanchis, F. Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations (Open Access) (2020) Urban Water Journal, 17 (6), pp. 568-575. Cited 7 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2020.1800762spa
dcterms.bibliographicCitationTijsseling, A.S., Hou, Q., Bozkus, Z., Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (Open Access) (2016) Journal of Pressure Vessel Technology, Transactions of the ASME, 138 (3), art. no. 031301. Cited 35 times. http://asmedl.aip.org/PressureVesselTech doi: 10.1115/1.4031508spa
dcterms.bibliographicCitationVasconcelos, J.G., Chosie, C.D., Leite, G.M. Investigation of air pockets compression and motion in stormwater storage tunnels (Open Access) (2012) World Environmental and Water Resources Congress 2012: Crossing Boundaries, Proceedings of the 2012 Congress, pp. 1458-1468. Cited 5 times. ISBN: 978-078441231-2 doi: 10.1061/9780784412312.146spa
dcterms.bibliographicCitationVasconcelos, J.G., Wright, S.J. Experimental investigation of surges in a stormwater storage tunnel (2005) Journal of Hydraulic Engineering, 131 (10), pp. 853-861. Cited 66 times. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853)spa
dcterms.bibliographicCitationVasconcelos, J.G., Wright, S.J. Investigation of rapid filling of poorly ventilated stormwater storage tunnels (Open Access) (2009) Journal of Hydraulic Research, 47 (5), pp. 547-558. Cited 48 times. doi: 10.3826/jhr.2009.3390spa
dcterms.bibliographicCitationWang, H., Zhai, Z.J. Analyzing grid independency and numerical viscosity of computational fluid dynamics for indoor environment applications (Open Access) (2012) Building and Environment, 52, pp. 107-118. Cited 47 times. doi: 10.1016/j.buildenv.2011.12.019spa
dcterms.bibliographicCitationWilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models (Open Access) (1988) AIAA Journal, 26 (11), pp. 1299-1310. Cited 2465 times. doi: 10.2514/3.10041spa
dcterms.bibliographicCitationWu, G., Duan, X., Zhu, J., Li, X., Tang, X., Gao, H. Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models (2021) Journal of Hydroinformatics, 23 (2), pp. 231-248. Cited 7 times. https://iwaponline.com/jh/article/23/2/231/80219/Investigations-of-hydraulic-transient-flows-in doi: 10.2166/HYDRO.2021.134spa
dcterms.bibliographicCitationZhou, L., Liu, D.-Y., Ou, C.-Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140. Cited 79 times. http://jeacfm.cse.polyu.edu.hk/download/download.php?dirname=vol5no1&act=d&f=vol5no1-10_ZhouL.pdf doi: 10.1080/19942060.2011.11015357spa
dcterms.bibliographicCitationZhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S. Dynamic behavior of entrapped air pocket in a water filling pipeline (Open Access) (2018) Journal of Hydraulic Engineering, 144 (8), art. no. 04018045. Cited 49 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001491spa
dcterms.bibliographicCitationZukoski, E.E. Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes (Open Access) (1966) Journal of Fluid Mechanics, 25 (4), pp. 821-837. Cited 323 times. doi: 10.1017/S0022112066000442spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1061/JHEND8.HYENG-13302
dc.subject.keywordsAir pocketspa
dc.subject.keywordsComputational fluid dynamics (CFD)spa
dc.subject.keywordsEmptying processspa
dc.subject.keywordsPressure pulsesspa
dc.subject.keywordsThree-dimensional modelspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.