Mostrar el registro sencillo del ítem

dc.contributor.authorBonilla-Correa, Dalia M.
dc.contributor.authorCoronado-Hernández, Óscar E.
dc.contributor.authorFuertes-Miquel, Vicente S.
dc.contributor.authorBesharat, Mohsen
dc.contributor.authorRamos, Helena M.
dc.date.accessioned2023-07-21T15:39:24Z
dc.date.available2023-07-21T15:39:24Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationBonilla-Correa, D.M.; Coronado-Hernández, Ó.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Application of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Filling. Water 2023, 15, 1304. https://doi.org/10.3390/w15071304spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12271
dc.description.abstractThe estimation of thermodynamic behavior during filling processes with entrapped air in water pipelines is a complex task as it requires solving a system of algebraic-differential equations. A lot of different numerical methods have been used for this purpose in literature including the rigid water column (RWC) model. The main advantage of the RWC model is its acceptable accuracy with very low computational load. In that context, this research presents the computation of critical points of the physical equations that describe the phenomenon. These points provide information about the final position of the air–water interface. The Newton–Raphson method was then applied to obtain a unique equation that can be used by engineers to directly compute variables such as air pocket pressure and water column length at the end of the hydraulic event. A case study was analyzed to compare the results of the mathematical model with the obtained equation for computing critical points. Both methods provided the same values for the water column length at the end of the hydraulic event. A sensitivity analysis was conducted to identify dependent and non-dependent parameters for evaluating the critical points. The proposed formulation was validated through an experimental set of data. © 2023 by the authors.spa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceWater (Switzerland)spa
dc.titleApplication of Newton–Raphson Method for Computing the Final Air–Water Interface Location in a Pipe Water Fillingspa
dcterms.bibliographicCitationTasca, E., Besharat, M., Ramos, H.M., Luvizotto, E., Karney, B. Contribution of Air Management to the Energy Efficiency of Water Pipelines (2023) Sustainability (Switzerland), 15 (5), art. no. 3875. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su15053875spa
dcterms.bibliographicCitationMartins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C. CFD modeling of transient flow in pressurized pipes (2016) Computers and Fluids, 126, pp. 129-140. Cited 70 times. doi: 10.1016/j.compfluid.2015.12.002spa
dcterms.bibliographicCitationMaddahian, R., Shaygan, F., Bucur, D.M. Developing a 1D-3D model to investigate the effect of entrapped air on pressure surge during the rapid filling of a pipe (2021) IOP Conference Series: Earth and Environmental Science, 774 (1), art. no. 012069. Cited 2 times. https://iopscience.iop.org/journal/1755-1315 doi: 10.1088/1755-1315/774/1/012069spa
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188spa
dcterms.bibliographicCitation(2016) Manual of Water Supply Practices M51—Air Valves: Air Release, Air/Vacuum and Combination. Cited 9 times. AWWA, Denver, CO, USAspa
dcterms.bibliographicCitationZhou, L., Liu, D. Experimental investigation of entrapped air pocket in a partially full water pipe (2013) Journal of Hydraulic Research, 51 (4), pp. 469-474. Cited 37 times. doi: 10.1080/00221686.2013.785985spa
dcterms.bibliographicCitationTijsseling, A.S., Hou, Q., Bozkuş, Z. Rapid Liquid Filling of a Pipe With Venting Entrapped Gas: Analytical and Numerical Solutions (Open Access) (2019) Journal of Pressure Vessel Technology, Transactions of the ASME, 141 (4), art. no. 041301. Cited 11 times. https://pressurevesseltech.asmedigitalcollection.asme.org/journal.aspx doi: 10.1115/1.4043321spa
dcterms.bibliographicCitationLiou, C.P., Hunt, W.A. Filling of pipelines with undulating elevation profiles (1996) Journal of Hydraulic Engineering, 122 (10), pp. 534-539. Cited 83 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)0733-9429(1996)122:10(534)spa
dcterms.bibliographicCitationIzquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., García-Serra, J. Pipeline start-up with entrapped air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590. Cited 91 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221689909498518spa
dcterms.bibliographicCitationWang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., (...), Xu, C. CFD approach for column separation in water pipelines (Open Access) (2016) Journal of Hydraulic Engineering, 142 (10), art. no. 04016036. Cited 32 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001171spa
dcterms.bibliographicCitationChan, S.N., Cong, J., Lee, J.H.W. 3D numerical modeling of geyser formation by release of entrapped air from horizontal pipe into vertical shaft (2018) Journal of Hydraulic Engineering, 144 (3), art. no. 04017071. Cited 29 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001416spa
dcterms.bibliographicCitationWang, J., Vasconcelos, J.G. Manhole cover displacement caused by the release of entrapped air pockets (2018) Journal of Water Management Modeling, 2018, art. no. C444. Cited 10 times. https://www.chijournal.org/Journals/PDF/C444 doi: 10.14796/JWMM.C444spa
dcterms.bibliographicCitationMartins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046spa
dcterms.bibliographicCitationTijsseling, A.S., Hou, Q., Bozkus, Z., Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (Open Access) (2016) Journal of Pressure Vessel Technology, Transactions of the ASME, 138 (3), art. no. 031301. Cited 35 times. http://asmedl.aip.org/PressureVesselTech doi: 10.1115/1.4031508spa
dcterms.bibliographicCitationZhou, L., Cao, Y., Karney, B., Vasconcelos, J.G., Liu, D., Wang, P. Unsteady friction in transient vertical-pipe flow with trapped air (Open Access) (2021) Journal of Hydraulic Research, 59 (5), pp. 820-834. Cited 4 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2020.1844808spa
dcterms.bibliographicCitationZhou, L., Pan, T., Wang, H., Liu, D., Wang, P. Rapid air expulsion through an orifice in a vertical water pipe (Open Access) (2019) Journal of Hydraulic Research, 57 (3), pp. 307-317. Cited 20 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1475427spa
dcterms.bibliographicCitationZhou, L., Cao, Y., Karney, B., Bergant, A., Tijsseling, A.S., Liu, D., Wang, P. Expulsion of Entrapped Air in a Rapidly Filling Horizontal Pipe (2020) Journal of Hydraulic Engineering, 146 (7), art. no. 04020047. Cited 14 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001773spa
dcterms.bibliographicCitationCoronado-Hernández, O.E., Bonilla-Correa, D.M., Lovo, A., Fuertes-Miquel, V.S., Gatica, G., Linfati, R., Coronado-Hernández, J.R. An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations (2022) Water (Switzerland), 14 (21), art. no. 3364. Cited 2 times. http://www.mdpi.com/journal/water doi: 10.3390/w14213364spa
dcterms.bibliographicCitationCanelon, D.J. Pivoting strategies in the solution of the saint-venant equations (Open Access) (2009) Journal of Irrigation and Drainage Engineering, 135 (1), pp. 96-101. Cited 3 times. doi: 10.1061/(ASCE)0733-9437(2009)135:1(96)spa
dcterms.bibliographicCitationMartin, C.S. Entrapped Air in Pipelines Proceedings of the Second International Conference on Pressure Surges. Cited 148 times. London, UK, 22–24 September 1976spa
dcterms.bibliographicCitationChapra, S., Canale, R. (2015) Numerical Methods for Engineers. Cited 3376 times. 7th ed., Mcgraw-Hill Education, Cop, New York, NY, USAspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/w15071304
dc.subject.keywordsAir; Geysers;spa
dc.subject.keywordsEmptyingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.