Mostrar el registro sencillo del ítem

dc.contributor.authorCardenas, Yulineth
dc.contributor.authorCarrillo, Gaylord
dc.contributor.authorAlviz, Anibal
dc.contributor.authorAlviz, Antistio
dc.contributor.authorPortnoy, Ivan
dc.contributor.authorFajardo, Juan
dc.contributor.authorOcampo, Eric
dc.contributor.authorDa-Costa, Edson
dc.date.accessioned2023-07-21T15:38:53Z
dc.date.available2023-07-21T15:38:53Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationCardenas, Y., Carrillo, G., Alviz, A., Alviz, A., Portnoy, I., Fajardo, J., Ocampo, E., & Da-Costa, E. (2022). Application of a PCA-based fault detection and diagnosis method in a power generation system with a 2 MW natural gas engine. EUREKA: Physics and Engineering, (6), 84-98. https://doi.org/10.21303/2461-4262.2022.002701spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12270
dc.description.abstractBased on increasing global energy demand, electric power generation from Internal Combustion Engines (ICE) has increased over the years. On this idea, the industries have adopted different methods and procedures to prevent failures in these engines, achieve an extension of the life cycle of the machines, improve their safety, and provide financial savings. For this reason, this work implements a methodology for detecting and identifying failures in a natural gas engine (JGS 612 GS-N. L), based on the integration of Principal Component Analysis (PCA) and alarm streak analysis. A method used to describe a data set in terms of new uncorrelated variables or components. The components are ordered by the amount of original variance they describe, making the technique useful for reducing the dimensionality of a data set. Technically, PCA searches for the projection according to which the data are best represented in terms of least squares, using the T2 and Q statistics. In the initial stage, a PCA-based algorithm was developed to detect abnormal process trends and identify the variables of greater impact when these anomalies arise. In the next stage, an algorithm was developed and implemented, based on the analysis of alarm streaks, to identify the system’s behavior and thus classify f luctuations into either normal operating condition drifts or system failures. The application of the proposed methodology with real operation data of the engine (JGS 612 GS-N. L) shows that the method outperforms operators in detecting and identifying faults, as it performs these tasks considerably earlier than operators. © The Author(s) 2022.spa
dc.format.extent15 páginas
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEUREKA, Physics and Engineeringspa
dc.titleAPPLICATION OF A PCA-BASED FAULT DETECTION AND DIAGNOSIS METHOD IN A POWER GENERATION SYSTEM WITH A 2 MW NATURAL GAS ENGINEspa
dcterms.bibliographicCitationvan Schrick, D. Remarks on Terminology in the Field of Supervision, Fault Detection and Diagnosis (1997) IFAC Proceedings Volumes, 30 (18), pp. 959-964. Cited 47 times. https://doi.org/10.1016/s1474-6670(17)42524-9spa
dcterms.bibliographicCitationQuiñones-Grueiro, M., Prieto-Moreno, A., Verde, C., Llanes-Santiago, O. Data-driven monitoring of multimode continuous processes: A review (2019) Chemometrics and Intelligent Laboratory Systems, 189, pp. 56-71. Cited 90 times. www.elsevier.com/locate/chemometrics doi: 10.1016/j.chemolab.2019.03.012spa
dcterms.bibliographicCitationCoussement, A., Gicquel, O., Parente, A. MG-local-PCA method for reduced order combustion modeling (2013) Proceedings of the Combustion Institute, 34 (1), pp. 1117-1123. Cited 39 times. http://www.sciencedirect.com/science/journal/15407489 doi: 10.1016/j.proci.2012.05.073spa
dcterms.bibliographicCitationJung, D., Ng, K.Y., Frisk, E., Krysander, M. Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation (2018) Control Engineering Practice, 80, pp. 146-156. Cited 46 times. www.elsevier.com/inca/publications/store/1/2/3/ doi: 10.1016/j.conengprac.2018.08.013spa
dcterms.bibliographicCitationHaanchumpol, T., Sudasna-na-Ayudthya, P., Singhtaun, C. Modern multivariate control chart using spatial signed rank for non-normal process (2020) Engineering Science and Technology, an International Journal, 23 (4), pp. 859-869. Cited 8 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2019.12.001spa
dcterms.bibliographicCitationIsermann, R. Model-based fault-detection and diagnosis - Status and applications (2005) Annual Reviews in Control, 29 (1), pp. 71-85. Cited 1329 times. doi: 10.1016/j.arcontrol.2004.12.002spa
dcterms.bibliographicCitationJafarian, K., Mobin, M., Jafari-Marandi, R., Rabiei, E. Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring (2018) Measurement: Journal of the International Measurement Confederation, 128, pp. 527-536. Cited 77 times. doi: 10.1016/j.measurement.2018.04.062spa
dcterms.bibliographicCitationPortnoy, I., Melendez, K., Pinzon, H., Sanjuan, M. An improved weighted recursive PCA algorithm for adaptive fault detection (2016) Control Engineering Practice, 50, pp. 69-83. Cited 82 times. www.elsevier.com/inca/publications/store/1/2/3/ doi: 10.1016/j.conengprac.2016.02.010spa
dcterms.bibliographicCitationNiu, G., Xiong, L., Qin, X., Pecht, M. Fault detection isolation and diagnosis of multi-axle speed sensors for high-speed trains (2019) Mechanical Systems and Signal Processing, 131, pp. 183-198. Cited 26 times. http://www.elsevier.com/inca/publications/store/6/2/2/9/1/2/index.htt doi: 10.1016/j.ymssp.2019.05.053spa
dcterms.bibliographicCitationAlbarbar, A., Gu, F., Ball, A.D. Diesel engine fuel injection monitoring using acoustic measurements and independent component analysis (2010) Measurement: Journal of the International Measurement Confederation, 43 (10), pp. 1376-1386. Cited 114 times. doi: 10.1016/j.measurement.2010.08.003spa
dcterms.bibliographicCitationShahnazari, H. Fault diagnosis of nonlinear systems using recurrent neural networks (Open Access) (2020) Chemical Engineering Research and Design, 153, pp. 233-245. Cited 31 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description doi: 10.1016/j.cherd.2019.09.026spa
dcterms.bibliographicCitationAhmadi, H., Gholamzadeh, M., Shahmoradi, L., Nilashi, M., Rashvand, P. Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review (Open Access) (2018) Computer Methods and Programs in Biomedicine, 161, pp. 145-172. Cited 103 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2018.04.013spa
dcterms.bibliographicCitationCardenas, Y. (2019) Fallas en bujías para motores de generación a gas. Cited 2 times. (Tesis de maestría). Universidad del Atanticospa
dcterms.bibliographicCitationCamacho, J., Pérez-Villegas, A., Garciá-Teodoro, P., MacIá-Fernández, G. PCA-based multivariate statistical network monitoring for anomaly detection (2016) Computers and Security, 59, pp. 118-137. Cited 83 times. doi: 10.1016/j.cose.2016.02.008spa
dcterms.bibliographicCitationMeglen, R.R. Examining large databases: a chemometric approach using principal component analysis (1992) Marine Chemistry, 39 (1-3), pp. 217-237. Cited 191 times. doi: 10.1016/0304-4203(92)90103-Hspa
dcterms.bibliographicCitationAversano, G., Parra-Alvarez, J.C., Isaac, B.J., Smith, S.T., Coussement, A., Gicquel, O., Parente, A. PCA and Kriging for the efficient exploration of consistency regions in Uncertainty Quantification (2019) Proceedings of the Combustion Institute, 37 (4), pp. 4461-4469. Cited 12 times. http://www.sciencedirect.com/science/journal/15407489 doi: 10.1016/j.proci.2018.07.040spa
dcterms.bibliographicCitationLi, Z., Yan, X., Yuan, C., Peng, Z., Li, L. Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method (Open Access) (2011) Mechanical Systems and Signal Processing, 25 (7), pp. 2589-2607. Cited 142 times. doi: 10.1016/j.ymssp.2011.02.017spa
dcterms.bibliographicCitationRosković, A., Grbić, R., Slišković, D. Fault tolerant system in a process measurement system based on the PCA method (2011) MIPRO 2011 - 34th International Convention on Information and Communication Technology, Electronics and Microelectronics - Proceedings, art. no. 5967325, pp. 1646-1651. Cited 4 times. ISBN: 978-953233067-0spa
dcterms.bibliographicCitationHarrou, F., Nounou, M., Nounou, H. A statistical fault detection strategy using PCA based EWMA control schemes (2013) 2013 9th Asian Control Conference, ASCC 2013, art. no. 6606311. Cited 16 times. ISBN: 978-146735769-2 doi: 10.1109/ASCC.2013.6606311spa
dcterms.bibliographicCitationDing, S., Zhang, P., Ding, E., Yin, S., Naik, A., Deng, P., Gui, W. On the Application of PCA Technique to Fault Diagnosis (2010) Tsinghua Science and Technology, 15 (2), pp. 138-144. Cited 130 times. doi: 10.1016/S1007-0214(10)70043-2spa
dcterms.bibliographicCitationYin, S., Ding, S.X., Naik, A., Deng, P., Haghani, A. On PCA-based fault diagnosis techniques (2010) Conference on Control and Fault-Tolerant Systems, SysTol'10 - Final Program and Book of Abstracts, art. no. 5676031, pp. 179-184. Cited 31 times. ISBN: 978-142448154-5 doi: 10.1109/SYSTOL.2010.5676031spa
dcterms.bibliographicCitationTong, C., Lan, T., Shi, X. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach (2017) Chemometrics and Intelligent Laboratory Systems, 161, pp. 34-42. Cited 57 times. www.elsevier.com/locate/chemometrics doi: 10.1016/j.chemolab.2016.11.015spa
dcterms.bibliographicCitationHu, Z., Chen, Z., Gui, W., Jiang, B. Adaptive PCA based fault diagnosis scheme in imperial smelting process (Open Access) (2014) ISA Transactions, 53 (5), pp. 1446-1455. Cited 59 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/524244/description#description doi: 10.1016/j.isatra.2013.12.018spa
dcterms.bibliographicCitationHuang, Y., Shen, L., Liu, H. Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China (2019) Journal of Cleaner Production, 209, pp. 415-423. Cited 147 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2018.10.128spa
dcterms.bibliographicCitationMiller, P., Swanson, R. E., Heckler, C. E. Contribution plots: A missing link in multivariate quality control (1998) Applied mathematics and computer science, 8 (4), pp. 775-792. Cited 346 times.spa
dcterms.bibliographicCitationOliveira, J.C.M., Pontes, K.V., Sartori, I., Embiruçu, M. Fault Detection and Diagnosis in dynamic systems using Weightless Neural Networks (2017) Expert Systems with Applications, 84, pp. 200-219. Cited 36 times. doi: 10.1016/j.eswa.2017.05.020spa
dcterms.bibliographicCitationMårtensson, J., Hjalmarsson, H. Variance-error quantification for identified poles and zeros (2009) Automatica, 45 (11), pp. 2512-2525. Cited 16 times. doi: 10.1016/j.automatica.2009.08.001spa
dcterms.bibliographicCitationWu, X. Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach (2015) Transportation Research Part B: Methodological, 80, pp. 275-290. Cited 28 times. www.elsevier.com/inca/publications/store/5/4/8/ doi: 10.1016/j.trb.2015.07.009spa
dcterms.bibliographicCitationBoutellaa, E., Kerdjidj, O., Ghanem, K. Covariance matrix based fall detection from multiple wearable sensors (2019) Journal of Biomedical Informatics, 94, art. no. 103189. Cited 30 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2019.103189spa
dcterms.bibliographicCitationYang, H., Li, S., Li, K. Order estimation of multivariable ill-conditioned processes based on PCA method (Open Access) (2012) Journal of Process Control, 22 (7), pp. 1397-1403. Cited 6 times. doi: 10.1016/j.jprocont.2012.06.013spa
dcterms.bibliographicCitationZumoffen, D. (2008) Desarrollo de Sistemas de Diagnóstico de Fallas Integrado al Diseño de Control Tolerante a Fallas en Procesos Químicos. Cited 3 times.spa
dcterms.bibliographicCitationLane, S., Martin, E.B., Morris, A.J., Gower, P. Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process (2003) Transactions of the Institute of Measurement and Control, 25 (1), pp. 17-35. Cited 53 times. https://journals.sagepub.com/home/TIM doi: 10.1191/0142331203tm071oaspa
dcterms.bibliographicCitationVenkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K. A review of process fault detection and diagnosis part III: Process history based methods (2003) Computers and Chemical Engineering, 27 (3), pp. 327-346. Cited 1520 times. doi: 10.1016/S0098-1354(02)00162-Xspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.21303/2461-4262.2022.002701
dc.subject.keywordsBatch Process;spa
dc.subject.keywordsFault Detection;spa
dc.subject.keywordsCanonical Variate Analysisspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.