Mostrar el registro sencillo del ítem
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times
dc.contributor.author | Jiménez Tovar, Mary | |
dc.contributor.author | Acevedo-Chedid, Jaime | |
dc.contributor.author | Ospina-Mateus, Holman | |
dc.contributor.author | Salas-Navarro, Katherinne | |
dc.contributor.author | Sana, Shib Sankar | |
dc.date.accessioned | 2023-07-21T14:59:18Z | |
dc.date.available | 2023-07-21T14:59:18Z | |
dc.date.issued | 2023 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Jiménez Tovar, M., Acevedo-Chedid, J., Ospina-Mateus, H., Salas-Navarro, K., & Sana, S. S. (2023). An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times. Soft Computing. https://doi.org/10.1007/s00500-023-08342-2 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12259 | |
dc.description.abstract | Production scheduling is a critical factor to enhancing productivity in manufacturing engineering and combinatorial optimization research. The complexity and dynamic nature of production systems necessitates innovative solutions. The Job Shop Flexible Programming Problem (FJSP) provides a realistic environment for production, where processing times are variable and uncertain, and multiple objectives need optimization. To solve the Multi-Objective Flexible Fuzzy Job Shop problem with partial flexibility (P-MOFfJSP), this paper proposes a hybrid metaheuristic approach that combines the Teaching–Learning-based Optimization (TLBO) algorithm with a Genetic Algorithm. The proposed algorithm of Adaptive TLBO (TLBO-A) uses two genetic operators (mutation and crossover) with an adaptive population reconfiguration strategy, ensuring solution space exploration and preventing premature convergence. We have evaluated the TLBO-A algorithm's performance on benchmark instances commonly used in programming problems with fuzzy variables. The experimental analysis indicates significant results, demonstrating that the adaptive strategy improves the search for suitable solutions. The proposed algorithm (TLBO-A) exhibits low variations (around 11%) compared to the best mono-objective heuristic for the fuzzy makespan problem, indicating its robustness. Moreover, compared with other heuristics like traditional TLBO, the variations decrease to around 1%. However, TLBO-A stands out as it aims to solve a multi-objective problem, improving the fuzzy makespan, and identifying good results on the Pareto frontier for the fuzzy average flow time, all within this low variation margin. Our contribution addresses the challenges of production scheduling in fuzzy time environments and proposes a practical hybrid metaheuristic approach. The TLBO-A algorithm shows promising results in solving the P-MOFfJSP, highlighting the potential of our proposed methodology for solving real-world production scheduling problems. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Soft Computing | spa |
dc.title | An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times | spa |
dcterms.bibliographicCitation | Abdullah, S., Abdolrazzagh-Nezhad, M. Fuzzy job-shop scheduling problems: A review (2014) Information Sciences, 278, pp. 380-407. Cited 78 times. doi: 10.1016/j.ins.2014.03.060 | spa |
dcterms.bibliographicCitation | Acevedo-Chedid, J., Grice-Reyes, J., Ospina-Mateus, H., Salas-Navarro, K., Santander-Mercado, A., Sana, S.S. Soft-computing approaches for rescheduling problems in a manufacturing industry (2021) RAIRO - Operations Research, 55, pp. S2125-S2159. Cited 5 times. https://www.rairo-ro.org/ doi: 10.1051/ro/2020077 | spa |
dcterms.bibliographicCitation | Acevedo-Chedid, J., Salas-Navarro, K., Ospina-Mateus, H., Villalobo, A., Sana, S.S. Production System in a Collaborative Supply Chain Considering Deterioration (2021) International Journal of Applied and Computational Mathematics, 7 (3), art. no. 69. Cited 6 times. https://link.springer.com/journal/40819 doi: 10.1007/s40819-021-00965-z | spa |
dcterms.bibliographicCitation | Adnan, R.M., Yuan, X., Kisi, O., Adnan, M., Mehmood, A. Stream Flow Forecasting of Poorly Gauged Mountainous Watershed by Least Square Support Vector Machine, Fuzzy Genetic Algorithm and M5 Model Tree Using Climatic Data from Nearby Station (2018) Water Resources Management, 32 (14), pp. 4469-4486. Cited 39 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-018-2033-2 | spa |
dcterms.bibliographicCitation | Adnan, R.M., Mostafa, R.R., Elbeltagi, A., Yaseen, Z.M., Shahid, S., Kisi, O. Development of new machine learning model for streamflow prediction: case studies in Pakistan (2022) Stochastic Environmental Research and Risk Assessment, 36 (4), pp. 999-1033. Cited 31 times. http://link.springer-ny.com/link/service/journals/00477/index.htm doi: 10.1007/s00477-021-02111-z | spa |
dcterms.bibliographicCitation | Al-Janabi, S., Alkaim, A.F. A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation (2020) Soft Computing, 24 (1), pp. 555-569. Cited 121 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=h83ak0wtmr5uxkah9j5m&referrer=parent&backto=browsepublicationsresults,466,533; doi: 10.1007/s00500-019-03972-x | spa |
dcterms.bibliographicCitation | Al-Janabi, S., Alkaim, A. A novel optimization algorithm (Lion-AYAD) to find optimal DNA protein synthesis (2022) Egyptian Informatics Journal, 23 (2), pp. 271-290. Cited 27 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/723777/description#description doi: 10.1016/j.eij.2022.01.004 | spa |
dcterms.bibliographicCitation | Al-Janabi, S., Alkaim, A.F., Adel, Z. An Innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy (2020) Soft Computing, 24 (14), pp. 10943-10962. Cited 94 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=h83ak0wtmr5uxkah9j5m&referrer=parent&backto=browsepublicationsresults,466,533; doi: 10.1007/s00500-020-04905-9 | spa |
dcterms.bibliographicCitation | Al-Janabi, S., Mohammad, M., Al-Sultan, A. A new method for prediction of air pollution based on intelligent computation (2020) Soft Computing, 24 (1), pp. 661-680. Cited 122 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=h83ak0wtmr5uxkah9j5m&referrer=parent&backto=browsepublicationsresults,466,533; doi: 10.1007/s00500-019-04495-1 | spa |
dcterms.bibliographicCitation | Al-Janabi, S., Alkaim, A., Al-Janabi, E., Aljeboree, A., Mustafa, M. Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP) (2021) Neural Computing and Applications, 33 (21), pp. 14199-14229. Cited 50 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-021-06067-7 | spa |
dcterms.bibliographicCitation | Basiri, M.-A., Alinezhad, E., Tavakkoli-Moghaddam, R., Shahsavari-Poure, N. A hybrid intelligent algorithm for a fuzzy multi-objective job shop scheduling problem with reentrant workflows and parallel machines (2020) Journal of Intelligent and Fuzzy Systems, 39 (5), pp. 7769-7785. Cited 6 times. https://www.iospress.nl/journal/journal-of-intelligent-fuzzy-systems/ doi: 10.3233/JIFS-201120 | spa |
dcterms.bibliographicCitation | Baykasoǧlu, A., Hamzadayi, A., Köse, S.Y. Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases (2014) Information Sciences, 276, pp. 204-218. Cited 135 times. doi: 10.1016/j.ins.2014.02.056 | spa |
dcterms.bibliographicCitation | Behnamian, J. Matheuristic for the decentralized factories scheduling problem (2017) Applied Mathematical Modelling, 47, pp. 668-684. Cited 14 times. www.elsevier.com/inca/publications/store/5/2/4/9/9/8/ doi: 10.1016/j.apm.2017.02.033 | spa |
dcterms.bibliographicCitation | Boyer, V., Vallikavungal, J., Cantú Rodríguez, X., Salazar-Aguilar, M.A. The generalized flexible job shop scheduling problem (2021) Computers and Industrial Engineering, 160, art. no. 107542. Cited 6 times. https://www.journals.elsevier.com/computers-and-industrial-engineering doi: 10.1016/j.cie.2021.107542 | spa |
dcterms.bibliographicCitation | Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search (1993) Annals of Operations Research, 41 (3), pp. 157-183. Cited 816 times. doi: 10.1007/BF02023073 | spa |
dcterms.bibliographicCitation | Braune, R., Benda, F., Doerner, K.F., Hartl, R.F. A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems (2022) International Journal of Production Economics, 243, art. no. 108342. Cited 12 times. https://www.journals.elsevier.com/international-journal-of-production-economics doi: 10.1016/j.ijpe.2021.108342 | spa |
dcterms.bibliographicCitation | Bulbul, S.M.A., Roy, P.K. Adaptive teaching learning based optimization applied to nonlinear economic load dispatch problem (2014) Int J Swarm Intell Res, 5, pp. 1-16. Cited 3 times. | spa |
dcterms.bibliographicCitation | Chen, J.C., Wu, C.-C., Chen, C.-W., Chen, K.-H. Flexible job shop scheduling with parallel machines using Genetic Algorithm and Grouping Genetic Algorithm (2012) Expert Systems with Applications, 39 (11), pp. 10016-10021. Cited 100 times. doi: 10.1016/j.eswa.2012.01.211 | spa |
dcterms.bibliographicCitation | Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.E. Comparison of multi-objective optimization methodologies for engineering applications (2012) Computers and Mathematics with Applications, 63 (5), pp. 912-942. Cited 289 times. doi: 10.1016/j.camwa.2011.11.057 | spa |
dcterms.bibliographicCitation | Chiang, T.-C., Lin, H.-J. A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling (2013) International Journal of Production Economics, 141 (1), pp. 87-98. Cited 121 times. doi: 10.1016/j.ijpe.2012.03.034 | spa |
dcterms.bibliographicCitation | Civicioglu, P. Backtracking Search Optimization Algorithm for numerical optimization problems (2013) Applied Mathematics and Computation, 219 (15), pp. 8121-8144. Cited 828 times. doi: 10.1016/j.amc.2013.02.017 | spa |
dcterms.bibliographicCitation | Deng, Q., Gong, G., Gong, X., Zhang, L., Liu, W., Ren, Q. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling (2017) Computational Intelligence and Neuroscience, 2017, art. no. 5232518. Cited 42 times. http://www.hindawi.com/journals/cin doi: 10.1155/2017/5232518 | spa |
dcterms.bibliographicCitation | Engin, O., Ylmaz, M.K., Baysal, M.E., Sarucanl, A. Solving fuzzy job shop scheduling problems with availability constraints using a scatter search method (2013) Journal of Multiple-Valued Logic and Soft Computing, 21 (3-4), pp. 317-334. Cited 9 times. http://www.oldcitypublishing.com/pdf/3483 | spa |
dcterms.bibliographicCitation | Ertenlice, O., Kalayci, C.B. A survey of swarm intelligence for portfolio optimization: Algorithms and applications (2018) Swarm and Evolutionary Computation, 39, pp. 36-52. Cited 94 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description doi: 10.1016/j.swevo.2018.01.009 | spa |
dcterms.bibliographicCitation | Fazel Zarandi, M.H., Sadat Asl, A.A., Sotudian, S., Castillo, O. A state of the art review of intelligent scheduling (2020) Artificial Intelligence Review, 53 (1), pp. 501-593. Cited 51 times. www.springer.com/journal/10462 doi: 10.1007/s10462-018-9667-6 | spa |
dcterms.bibliographicCitation | Gaham, M., Bouzouia, B., Achour, N. An effective operations permutation-based discrete harmony search approach for the flexible job shop scheduling problem with makespan criterion (Open Access) (2018) Applied Intelligence, 48 (6), pp. 1423-1441. Cited 24 times. doi: 10.1007/s10489-017-0993-1 | spa |
dcterms.bibliographicCitation | Gao, J., Gen, M., Sun, L., Zhao, X. A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems (2007) Computers and Industrial Engineering, 53 (1), pp. 149-162. Cited 190 times. doi: 10.1016/j.cie.2007.04.010 | spa |
dcterms.bibliographicCitation | Gao, J., Sun, L., Gen, M. A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems (2008) Computers and Operations Research, 35 (9), pp. 2892-2907. Cited 457 times. doi: 10.1016/j.cor.2007.01.001 | spa |
dcterms.bibliographicCitation | Gao, K.Z., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F. An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time (2015) International Journal of Production Research, 53 (19), pp. 5896-5911. Cited 70 times. http://www.tandfonline.com/toc/tprs20/current doi: 10.1080/00207543.2015.1020174 | spa |
dcterms.bibliographicCitation | Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Chong, C.S., Cai, T.X. An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time (Open Access) (2016) Expert Systems with Applications, 65, pp. 52-67. Cited 125 times. doi: 10.1016/j.eswa.2016.07.046 | spa |
dcterms.bibliographicCitation | Gao, K.Z., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F., Sadollah, A. Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion (2016) Knowledge-Based Systems, 109, pp. 1-16. Cited 110 times. doi: 10.1016/j.knosys.2016.06.014 | spa |
dcterms.bibliographicCitation | Gao, D., Wang, G.-G., Pedrycz, W. Solving Fuzzy Job-Shop Scheduling Problem Using de Algorithm Improved by a Selection Mechanism (2020) IEEE Transactions on Fuzzy Systems, 28 (12), art. no. 9120283, pp. 3265-3275. Cited 177 times. https://ieeexplore.ieee.org/servlet/opac?punumber=91 doi: 10.1109/TFUZZ.2020.3003506 | spa |
dcterms.bibliographicCitation | He, C., Qiu, D., Guo, H. Solving fuzzy job shop scheduling problem based on interval number theory (2013) Proceedings of the 2012 International Conference on Information Technology and Software Engineering Springer, Berlin, Heidelberg | spa |
dcterms.bibliographicCitation | Ji, X., Ye, H., Zhou, J., Yin, Y., Shen, X. An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry (2017) Applied Soft Computing Journal, 57, pp. 504-516. Cited 66 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2017.04.029 | spa |
dcterms.bibliographicCitation | Jia, S., Hu, Z.-H. Path-relinking Tabu search for the multi-objective flexible job shop scheduling problem (2014) Computers and Operations Research, 47, pp. 11-26. Cited 89 times. doi: 10.1016/j.cor.2014.01.010 | spa |
dcterms.bibliographicCitation | Jin, L., Zhang, C., Shao, X., Tian, G. Mathematical modeling and a memetic algorithm for the integration of process planning and scheduling considering uncertain processing times (2016) Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230 (7), pp. 1272-1283. Cited 13 times. http://pib.sagepub.com/content/by/year doi: 10.1177/0954405415625916 | spa |
dcterms.bibliographicCitation | Jin, L., Zhang, C., Wen, X., Sun, C., Fei, X. A neutrosophic set-based TLBO algorithm for the flexible job-shop scheduling problem with routing flexibility and uncertain processing times (2021) Complex and Intelligent Systems, 7 (6), pp. 2833-2853. Cited 7 times. https://www.springer.com/journal/40747 doi: 10.1007/s40747-021-00461-3 | spa |
dcterms.bibliographicCitation | Joo, B.J., Shim, S.-O., Chua, T.J., Cai, T.X. Multi-level job scheduling under processing time uncertainty (Open Access) (2018) Computers and Industrial Engineering, 120, pp. 480-487. Cited 16 times. doi: 10.1016/j.cie.2018.02.003 | spa |
dcterms.bibliographicCitation | Kacem, I., Hammadi, S., Borne, P. Pareto-optimality approach for flexible job-shop scheduling problems: Hybridization of evolutionary algorithms and fuzzy logic (Open Access) (2002) Mathematics and Computers in Simulation, 60 (3-5), pp. 245-276. Cited 488 times. doi: 10.1016/S0378-4754(02)00019-8 | spa |
dcterms.bibliographicCitation | Kaplanoʇlu, V. An object-oriented approach for multi-objective flexible job-shop scheduling problem (2016) Expert Systems with Applications, 45, pp. 71-84. Cited 65 times. doi: 10.1016/j.eswa.2015.09.050 | spa |
dcterms.bibliographicCitation | Katoch, S., Chauhan, S.S., Kumar, V. A review on genetic algorithm: past, present, and future (2021) Multimedia Tools and Applications, 80 (5), pp. 8091-8126. Cited 965 times. https://link.springer.com/journal/11042 doi: 10.1007/s11042-020-10139-6 | spa |
dcterms.bibliographicCitation | Kisi, O., Parmar, K.S., Mahdavi-Meymand, A., Adnan, R.M., Shahid, S., Zounemat-Kermani, M. Water Quality Prediction of the Yamuna River in India Using Hybrid Neuro-Fuzzy Models (Open Access) (2023) Water (Switzerland), 15 (6), art. no. 1095. Cited 3 times. http://www.mdpi.com/journal/water doi: 10.3390/w15061095 | spa |
dcterms.bibliographicCitation | Kundakci, N., Kulak, O. Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem (2016) Computers and Industrial Engineering, 96, pp. 31-51. Cited 144 times. doi: 10.1016/j.cie.2016.03.011 | spa |
dcterms.bibliographicCitation | Lei, D. A genetic algorithm for flexible job shop scheduling with fuzzy processing time (2010) International Journal of Production Research, 48 (10), pp. 2995-3013. Cited 135 times. doi: 10.1080/00207540902814348 | spa |
dcterms.bibliographicCitation | Lei, D. Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling (Open Access) (2012) Applied Soft Computing Journal, 12 (8), pp. 2237-2245. Cited 111 times. doi: 10.1016/j.asoc.2012.03.025 | spa |
dcterms.bibliographicCitation | Lei, H., Xing, K., Han, L., Gao, Z. Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets (2017) Applied Soft Computing Journal, 55, pp. 413-423. Cited 20 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2017.01.045 | spa |
dcterms.bibliographicCitation | Lei, K., Guo, P., Zhao, W., Wang, Y., Qian, L., Meng, X., Tang, L. A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem (2022) Expert Systems with Applications, 205, art. no. 117796. Cited 11 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2022.117796 | spa |
dcterms.bibliographicCitation | Li, X., Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem (Open Access) (2016) International Journal of Production Economics, 174, pp. 93-110. Cited 353 times. doi: 10.1016/j.ijpe.2016.01.016 | spa |
dcterms.bibliographicCitation | Li, J.-Q., Pan, Q.-K. Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities (2013) International Journal of Production Economics, 145 (1), pp. 4-17. Cited 41 times. doi: 10.1016/j.ijpe.2012.11.005 | spa |
dcterms.bibliographicCitation | Li, J.-Q., Pan, Y.-X. A hybrid discrete particle swarm optimization algorithm for solving fuzzy job shop scheduling problem (2013) International Journal of Advanced Manufacturing Technology, 66 (1-4), pp. 583-596. Cited 30 times. doi: 10.1007/s00170-012-4337-3 | spa |
dcterms.bibliographicCitation | Li, J.-Q., Pan, Q.-K., Liang, Y.-C. An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems (2010) Computers and Industrial Engineering, 59 (4), pp. 647-662. Cited 209 times. doi: 10.1016/j.cie.2010.07.014 | spa |
dcterms.bibliographicCitation | Li, X., Peng, Z., Du, B., Guo, J., Xu, W., Zhuang, K. Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems (2017) Computers and Industrial Engineering, 113, pp. 10-26. Cited 91 times. doi: 10.1016/j.cie.2017.09.005 | spa |
dcterms.bibliographicCitation | Li, J.-Q., Liu, Z.-M., Li, C., Zheng, Z.-X. Improved Artificial Immune System Algorithm for Type-2 Fuzzy Flexible Job Shop Scheduling Problem (2021) IEEE Transactions on Fuzzy Systems, 29 (11), pp. 3234-3248. Cited 58 times. https://ieeexplore.ieee.org/servlet/opac?punumber=91 doi: 10.1109/TFUZZ.2020.3016225 | spa |
dcterms.bibliographicCitation | Li, R., Gong, W., Wang, L., Lu, C., Jiang, S. Two-stage knowledge-driven evolutionary algorithm for distributed green flexible job shop scheduling with type-2 fuzzy processing time (2022) Swarm and Evolutionary Computation, 74, art. no. 101139. Cited 8 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description doi: 10.1016/j.swevo.2022.101139 | spa |
dcterms.bibliographicCitation | Li, R., Gong, W., Lu, C. A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job shop scheduling (2022) Expert Systems with Applications, 203, art. no. 117380. Cited 18 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2022.117380 | spa |
dcterms.bibliographicCitation | Li, R., Gong, W., Lu, C. Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time (2022) Computers and Industrial Engineering, 168, art. no. 108099. Cited 24 times. https://www.journals.elsevier.com/computers-and-industrial-engineering doi: 10.1016/j.cie.2022.108099 | spa |
dcterms.bibliographicCitation | Li, J., Pan, Q.-K., Suganthan, P.N., Tasgetiren, M.F. Solving fuzzy job-shop scheduling problem by a hybrid PSO algorithm (Open Access) (2012) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7269 LNCS, pp. 275-282. Cited 12 times. ISBN: 978-364229352-8 doi: 10.1007/978-3-642-29353-5_32 | spa |
dcterms.bibliographicCitation | Lin, F.-T. Fuzzy job-shop scheduling based on ranking level (λ, 1) interval-valued fuzzy numbers (2002) IEEE Transactions on Fuzzy Systems, 10 (4), pp. 510-522. Cited 45 times. doi: 10.1109/TFUZZ.2002.800659 | spa |
dcterms.bibliographicCitation | Lin, J. Backtracking search based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time (2019) Engineering Applications of Artificial Intelligence, 77, pp. 186-196. Cited 62 times. doi: 10.1016/j.engappai.2018.10.008 | spa |
dcterms.bibliographicCitation | Lin, J., Zhang, S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem (2016) Computers and Industrial Engineering, 97, pp. 128-136. Cited 93 times. doi: 10.1016/j.cie.2016.05.005 | spa |
dcterms.bibliographicCitation | Lin, J., Zhu, L., Wang, Z.-J. A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem (Open Access) (2019) Computers and Industrial Engineering, 127, pp. 1089-1100. Cited 47 times. doi: 10.1016/j.cie.2018.11.046 | spa |
dcterms.bibliographicCitation | Liu, B., Fan, Y., Liu, Y. A fast estimation of distribution algorithm for dynamic fuzzy flexible job-shop scheduling problem (2015) Computers and Industrial Engineering, 87, pp. 193-201. Cited 43 times. doi: 10.1016/j.cie.2015.04.029 | spa |
dcterms.bibliographicCitation | Mandal, B., Roy, P.K. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization (Open Access) (2013) International Journal of Electrical Power and Energy Systems, 53 (1), pp. 123-134. Cited 201 times. doi: 10.1016/j.ijepes.2013.04.011 | spa |
dcterms.bibliographicCitation | Mane, S.U., Adamuthe, A.C., Omane, R.R. Master-Slave TLBO algorithm for constrained global optimization problems (2020) EAI Endorsed Trans Scalable Inf Syst, 8. | spa |
dcterms.bibliographicCitation | Mastrolilli, M., Gambardella, L.M. Effective neighbourhood functions for the flexible job shop problem (2000) Journal of Scheduling, 3 (1), pp. 3-20. Cited 445 times. www.springer.com/journal/10951 doi: 10.1002/(sici)1099-1425(200001/02)3:1<3::aid-jos32>3.0.co;2-y | spa |
dcterms.bibliographicCitation | Mohammed, G.S., Al-Janabi, S. An innovative synthesis of optmization techniques (FDIRE-GSK) for generation electrical renewable energy from natural resources (Open Access) (2022) Results in Engineering, 16, art. no. 100637. Cited 13 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100637 | spa |
dcterms.bibliographicCitation | Ortíz-Barrios, M., Petrillo, A., De Felice, F., Jaramillo-Rueda, N., Jiménez-Delgado, G., Borrero-López, L. A dispatching-fuzzy ahp-topsis model for scheduling flexible job-shop systems in industry 4.0 context (2021) Applied Sciences (Switzerland), 11 (11), art. no. 5107. Cited 7 times. https://www.mdpi.com/2076-3417/11/11/5107/pdf doi: 10.3390/app11115107 | spa |
dcterms.bibliographicCitation | Özgüven, C., Özbakir, L., Yavuz, Y. Mathematical models for job-shop scheduling problems with routing and process plan flexibility (2010) Applied Mathematical Modelling, 34 (6), pp. 1539-1548. Cited 218 times. doi: 10.1016/j.apm.2009.09.002 | spa |
dcterms.bibliographicCitation | Palacios, J.J., Puente, J., González-Rodríguez, I., Vela, C.R. Hybrid tabu search for fuzzy job shop (Open Access) (2013) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7930 LNCS (PART 1), pp. 376-385. Cited 6 times. ISBN: 978-364238636-7 doi: 10.1007/978-3-642-38637-4_39 | spa |
dcterms.bibliographicCitation | Palacios, J.J., González, M.A., Vela, C.R., González-Rodríguez, I., Puente, J. Genetic tabu search for the fuzzy flexible job shop problem (2015) Computers and Operations Research, 54, pp. 74-89. Cited 76 times. www.elsevier.com/inca/publications/store/3/0/0/ doi: 10.1016/j.cor.2014.08.023 | spa |
dcterms.bibliographicCitation | Pan, C., Qiao, Y., Wu, N., Zhou, M. A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with wafer residency time constraints and activity time variation (2015) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45 (5), art. no. 6975191, pp. 805-818. Cited 44 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6221021 doi: 10.1109/TSMC.2014.2368995 | spa |
dcterms.bibliographicCitation | Pan, Z., Lei, D., Wang, L. A Bi-Population Evolutionary Algorithm With Feedback for Energy-Efficient Fuzzy Flexible Job Shop Scheduling (Open Access) (2022) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52 (8), pp. 5295-5307. Cited 13 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6221021 doi: 10.1109/TSMC.2021.3120702 | spa |
dcterms.bibliographicCitation | Petrović, D.V., Tanasijević, M., Milić, V., Lilić, N., Stojadinović, S., Svrkota, I. Risk assessment model of mining equipment failure based on fuzzy logic (2014) Expert Systems with Applications, 41 (18), pp. 8157-8164. Cited 81 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2014.06.042 | spa |
dcterms.bibliographicCitation | Pezzella, F., Morganti, G., Ciaschetti, G. A genetic algorithm for the Flexible Job-shop Scheduling Problem (2008) Computers and Operations Research, 35 (10), pp. 3202-3212. Cited 745 times. doi: 10.1016/j.cor.2007.02.014 | spa |
dcterms.bibliographicCitation | Pickard, J.K., Carretero, J.A., Bhavsar, V.C. On the convergence and origin bias of the Teaching-Learning-Based-Optimization algorithm (2016) Applied Soft Computing Journal, 46, pp. 115-127. Cited 35 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2016.04.029 | spa |
dcterms.bibliographicCitation | Pinedo, M.L. Planning and scheduling in manufacturing and services: Second edition (2009) Planning and Scheduling in Manufacturing and Services: Second Edition, pp. 1-536. Cited 452 times. http://link.springer.com/book/10.1007%2F978-1-4419-0910-7 ISBN: 978-144190909-1 doi: 10.1007/978-1-4419-0910-7 | spa |
dcterms.bibliographicCitation | Rao, R.V., Rai, D.P. Optimisation of advanced finishing processes using a teaching-learning-based optimisation algorithm (2016) Nanofinishing science and technology, pp. 495-518. CRC Press | spa |
dcterms.bibliographicCitation | Roy, P.K., Sarkar, R. Solution of unit commitment problem using quasi-oppositional teaching learning based algorithm (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 60, pp. 96-106. Cited 50 times. doi: 10.1016/j.ijepes.2014.02.008 | spa |
dcterms.bibliographicCitation | Satapathy, S.C., Naik, A., Parvathi, K. A teaching learning based optimization based on orthogonal design for solving global optimization problems (2013) SpringerPlus, 2 (1), art. no. 130. Cited 89 times. http://www.springerplus.com/archive doi: 10.1186/2193-1801-2-130 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | https://doi.org/10.1007/s00500-023-08342-2 | |
dc.subject.keywords | Job Shop Scheduling Problem; | spa |
dc.subject.keywords | Makespan; | spa |
dc.subject.keywords | Genetic Algorithm | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.