Mostrar el registro sencillo del ítem
High impedance fault modeling and location for transmission line✰
dc.contributor.author | Doria-García, Jose | |
dc.contributor.author | Orozco-Henao, Cesar | |
dc.contributor.author | Leborgne, Roberto | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Gil-González, Walter | |
dc.date.accessioned | 2023-07-19T21:29:20Z | |
dc.date.available | 2023-07-19T21:29:20Z | |
dc.date.issued | 2021 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Doria-García, J., Orozco-Henao, C., Leborgne, R., Montoya, O. D., & Gil-González, W. (2021). High impedance fault modeling and location for transmission line✰. Electric Power Systems Research, 196, 107202. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12245 | |
dc.description.abstract | A fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to estimate the fault location in transmission lines. The mathematical formulation considers the distributed parameters transmission line model for the estimation of the fault distance, and it is obtained by the application of Gauss-Newton method. Said method considers available voltage and current measurements at both terminals of the transmission line as well as the line parameters. Moreover, the method can be used for locating high and low impedance faults. Additionally, it is proposed an adjustable HIF model to validate its performance, which allows to generate synthetic high impedance faults by setting specific features of a HIF from simple input parameters. The error in fault location accuracy is under 0.1% for more than 90% of the performance test cases. The easy implementation of this method and encouraging test results indicate its potential for real-life applications. © 2021 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Electric Power Systems Research | spa |
dc.title | High impedance fault modeling and location for transmission line✰ | spa |
dcterms.bibliographicCitation | PC37.250/D1.30, Nov 2019 - PC37.250/D1.30, Nov 2019 - IEEE Approved Draft Guide for Engineering, Implementation, and Management of System Integrity Protection Schemes - IEEE Standard n.d. (accessed October 29, 2020). https://ieeexplore.ieee.org/document/9031811 | spa |
dcterms.bibliographicCitation | Anderson, P. Analysis of Faulted Power Systems (1995) . Cited 576 times. Institute of Electrical and Electronics, Inc Iowa | spa |
dcterms.bibliographicCitation | Daqing, H. Detection of high-impedance faults in power distribution systems (2007) 2007 Power Systems Conference: Advance Metering, Protection, Control, Communication, and Distributed Resources, PSC 2007, art. no. 4740902, pp. 85-95. Cited 30 times. ISBN: 978-142440855-9 doi: 10.1109/PSAMP.2007.4740902 | spa |
dcterms.bibliographicCitation | Ramamurthy, T.A., Swarup, K.S. High Impedance Fault detection using DWT for transmission and distribution networks (2016) 2016 IEEE 6th International Conference on Power Systems, ICPS 2016, art. no. 7584004. Cited 6 times. ISBN: 978-150900128-6 doi: 10.1109/ICPES.2016.7584004 | spa |
dcterms.bibliographicCitation | Emanuel, A.E., Cyganski, D., Orr, J.A., Shiller, S., Gulachenski, E.M. High impedance fault arcing on sandy soil in 15kV distribution feeders: Contributions to the evaluation of the low frequency spectrum (1990) IEEE Transactions on Power Delivery, 5 (2), pp. 676-686. Cited 220 times. doi: 10.1109/61.53070 | spa |
dcterms.bibliographicCitation | Jerrings, D.I., Linders, J.R. Ground resistance-revisited (1989) IEEE Power Engineering Review, 9 (4), p. 54. Cited 3 times. doi: 10.1109/MPER.1989.4310592 | spa |
dcterms.bibliographicCitation | Aucoin, M. Status of high impedance fault detection (1985) IEEE Transactions on Power Apparatus and Systems, PAS-104 (3), pp. 637-644. Cited 13 times. doi: 10.1109/TPAS.1985.318999 | spa |
dcterms.bibliographicCitation | Jannati, M., Eslami, L. Precise modeling of high impedance faults in power distribution system in EMTPWorks software (2013) Journal of Electrical Engineering, 13 (2), pp. 283-290. Cited 4 times. | spa |
dcterms.bibliographicCitation | Nam, S.R., Park, J.K., Kang, Y.C., Kim, T.H. A modeling method of a high impedance fault in a distribution system using two series time-varying resistances in EMTP (2001) Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2 (SUMMER), pp. 1175-1180. Cited 97 times. doi: 10.1109/pess.2001.970231 | spa |
dcterms.bibliographicCitation | Dos Santos, W.C., De Souza, B.A., Dantas Brito, N.S., Costa, F.B., Cerqueira Paes Jr., M.R. High impedance faults: From field tests to modeling (2013) Journal of Control, Automation and Electrical Systems, 24 (6), pp. 885-896. Cited 45 times. doi: 10.1007/s40313-013-0072-8 | spa |
dcterms.bibliographicCitation | de Aguiar, R.A., Dalcastagnê, A.L., Zürn, H.H., Seara, R. Impedance-based fault location methods: Sensitivity analysis and performance improvement (2018) Electric Power Systems Research, 155, pp. 236-245. Cited 27 times. doi: 10.1016/j.epsr.2017.10.021 | spa |
dcterms.bibliographicCitation | Akmaz, D., Mamiş, M.S., Arkan, M., Tağluk, M.E. Transmission line fault location using traveling wave frequencies and extreme learning machine (2018) Electric Power Systems Research, 155, pp. 1-7. Cited 62 times. doi: 10.1016/j.epsr.2017.09.019 | spa |
dcterms.bibliographicCitation | Di Santo, S.G., Pereira, C.E.D.M. Fault location method applied to transmission lines of general configuration (Open Access) (2015) International Journal of Electrical Power and Energy Systems, 69, pp. 287-294. Cited 16 times. doi: 10.1016/j.ijepes.2015.01.014 | spa |
dcterms.bibliographicCitation | Doria-Garcia, J., Orozco-Henao, C., Iurinic, L.U., Pulgarín-Rivera, J.D. High impedance fault location: Generalized extension for ground faults (2020) International Journal of Electrical Power and Energy Systems, 114, art. no. 105387. Cited 8 times. doi: 10.1016/j.ijepes.2019.105387 | spa |
dcterms.bibliographicCitation | Livani, H., Evrenosoglu, C.Y. A machine learning and wavelet-based fault location method for hybrid transmission lines (2014) IEEE Transactions on Smart Grid, 5 (1), art. no. 6558520, pp. 51-59. Cited 207 times. doi: 10.1109/TSG.2013.2260421 | spa |
dcterms.bibliographicCitation | Chen, M.-Y., Zhai, J.-Q., Lang, Z.-Q., Liao, J.-C., Fan, Z.-Y. High impedance fault location in transmission line using nonlinear frequency analysis (2010) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6328 LNCS (PART 1), pp. 104-111. Cited 5 times. ISBN: 3642156207; 978-364215620-5 doi: 10.1007/978-3-642-15621-2_13 | spa |
dcterms.bibliographicCitation | Iurinic, L.U., Herrera-Orozco, A.R., Ferraz, R.G., Bretas, A.S. Distribution Systems High-Impedance Fault Location: A Parameter Estimation Approach (2016) IEEE Transactions on Power Delivery, 31 (4), art. no. 7355370, pp. 1806-1814. Cited 77 times. doi: 10.1109/TPWRD.2015.2507541 | spa |
dcterms.bibliographicCitation | Ghazizadeh-Ahsaee, M. Accurate NHIF locator utilizing two-end unsynchronized measurements (2013) IEEE Transactions on Power Delivery, 28 (1), art. no. 6389794, pp. 419-426. Cited 12 times. doi: 10.1109/TPWRD.2012.2215889 | spa |
dcterms.bibliographicCitation | Lee, C.J., Park, J.B., Shin, J.R., Radojevié, Z.M. A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition (2006) IEEE Transactions on Power Systems, 21 (3), pp. 1460-1462. Cited 62 times. doi: 10.1109/TPWRS.2006.876646 | spa |
dcterms.bibliographicCitation | Ferraz, R.G., Iurinic, L.U., Filomena, A.D., Gazzana, D.S., Bretas, A.S. Arc fault location: A nonlinear time varying fault model and frequency domain parameter estimation approach (2016) International Journal of Electrical Power and Energy Systems, 80, pp. 347-355. Cited 26 times. doi: 10.1016/j.ijepes.2016.02.003 | spa |
dcterms.bibliographicCitation | Gratton, S., Lawless, A.S., Nichols, N.K. Approximate Gauss-newton methods for nonlinear least squares problems (2007) SIAM Journal on Optimization, 18 (1), pp. 106-132. Cited 133 times. doi: 10.1137/050624935 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1016/j.epsr.2021.107202 | |
dc.subject.keywords | Fault Detection; | spa |
dc.subject.keywords | Electric Impedance; | spa |
dc.subject.keywords | Electric Fault Location | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.