Mostrar el registro sencillo del ítem

dc.contributor.authorHernández-Fernández, Joaquín
dc.contributor.authorPuello-Polo, Esneyder
dc.contributor.authorMárquez, Edgar
dc.date.accessioned2023-07-19T21:23:50Z
dc.date.available2023-07-19T21:23:50Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12226
dc.description.abstractThe presence of impurities such as H2S, thiols, ketones, and permanent gases in propylene of fossil origin and their use in the polypropylene production process affect the efficiency of the synthesis and the mechanical properties of the polymer and generate millions of losses worldwide. This creates an urgent need to know the families of inhibitors and their concentration levels. This article uses ethylene green to synthesize an ethylene–propylene copolymer. It describes the impact of trace impurities of furan in ethylene green and how this furan influences the loss of properties such as thermal and mechanical properties of the random copolymer. For the development of the investigation, 12 runs were carried out, each in triplicate. The results show an evident influence of furan on the productivity of the Ziegler–Natta catalyst (ZN); productivity losses of 10, 20, and 41% were obtained for the copolymers synthesized with ethylene rich in 6, 12, and 25 ppm of furan, respectively. PP0 (without furan) did not present losses. Likewise, as the concentration of furan increased, it was observed that the melt flow index (MFI), thermal (TGA), and mechanical properties (tensile, bending, and impact) decreased significantly. Therefore, it can be affirmed that furan should be a substance to be controlled in the purification processes of green ethylene. © 2023 by the authors.spa
dc.format.extent13 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePolymersspa
dc.titleFuran as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Propertiesspa
dcterms.bibliographicCitationHernández-Fernández, J., Guerra, Y., Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale (2022) Journal of Polymers and the Environment, 30 (11), pp. 4800-4808. Cited 8 times. https://www.springer.com/journal/10924 doi: 10.1007/s10924-022-02557-4spa
dcterms.bibliographicCitationHernández-Fernandez, J., Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography (2019) Journal of Chromatography A, 1607, art. no. 460442. Cited 29 times. www.elsevier.com/locate/chroma doi: 10.1016/j.chroma.2019.460442spa
dcterms.bibliographicCitationJoaquin, H.-F., Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization (2020) Journal of Chromatography A, 1614, art. no. 460736. Cited 23 times. www.elsevier.com/locate/chroma doi: 10.1016/j.chroma.2019.460736spa
dcterms.bibliographicCitationFernández, J.H., Cano, H., Guerra, Y., Polo, E.P., Ríos-Rojas, J.F., Vivas-Reyes, R., Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC) (2022) Sustainability (Switzerland), 14 (9), art. no. 4920. Cited 14 times. https://www.mdpi.com/2071-1050/14/9/4920/pdf doi: 10.3390/su14094920spa
dcterms.bibliographicCitationPicó, Y., Soursou, V., Alfarhan, A.H., El-Sheikh, M.A., Barceló, D. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian cities and assessment of their ecological risk (2021) Journal of Hazardous Materials, 416, art. no. 125747. Cited 22 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2021.125747spa
dcterms.bibliographicCitationMallow, O., Spacek, S., Schwarzböck, T., Fellner, J., Rechberger, H. A new thermoanalytical method for the quantification of microplastics in industrial wastewater (2020) Environmental Pollution, 259, art. no. 113862. Cited 28 times. https://www.journals.elsevier.com/environmental-pollution doi: 10.1016/j.envpol.2019.113862spa
dcterms.bibliographicCitationVajravel, S., Sirin, S., Kosourov, S., Allahverdiyeva, Y. Towards sustainable ethylene production with cyanobacterial artificial biofilms (2020) Green Chemistry, 22 (19), pp. 6404-6414. Cited 21 times. http://pubs.rsc.org/en/journals/journal/gc doi: 10.1039/d0gc01830aspa
dcterms.bibliographicCitationWang, Z., Shi, R., Zhang, T. Three-phase electrochemistry for green ethylene production (2021) Current Opinion in Electrochemistry, 30, art. no. 100789. Cited 6 times. www.journals.elsevier.com/current-opinion-in-electrochemistry doi: 10.1016/j.coelec.2021.100789spa
dcterms.bibliographicCitationPenteado, A.T., Kim, M., Godini, H.R., Esche, E., Repke, J.-U. Biogas as a renewable feedstock for green ethylene production via oxidative coupling of methane: Preliminary feasibility study (2017) Chemical Engineering Transactions, 61, pp. 589-594. Cited 16 times. http://www.aidic.it/cet/ doi: 10.3303/CET1761096spa
dcterms.bibliographicCitationHernández-Fernández, J., Guerra, Y., Puello-Polo, E., Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene (2022) Polymers, 14 (15), art. no. 3123. Cited 14 times. http://www.mdpi.com/journal/polymers doi: 10.3390/polym14153123spa
dcterms.bibliographicCitationHernández-Fernández, J., López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis (2021) Journal of Analytical and Applied Pyrolysis, 155, art. no. 105052. Cited 17 times. https://www.journals.elsevier.com/journal-of-analytical-and-applied-pyrolysis doi: 10.1016/j.jaap.2021.105052spa
dcterms.bibliographicCitationRuiz, M.L. (2007) Tesis Sobre Determinación y Evaluación de las Emisiones de Dioxinas y Furanos en la Producción de Cemento en España Universidad Complutense de Madrid (UCM), Madrid, Spainspa
dcterms.bibliographicCitationAlsabri, A., Tahir, F., Al-Ghamdi, S.G. Life-cycle assessment of polypropylene production in the gulf cooperation council (Gcc) region (2021) Polymers, 13 (21), art. no. 3793. Cited 20 times. https://www.mdpi.com/2073-4360/13/21/3793/pdf doi: 10.3390/polym13213793spa
dcterms.bibliographicCitationCáceres, C.A.C., Canevarolo, S.V. Correlation between Melt Flow Index and chain scission distribution function during the thermo-mechanical degradation of polypropylene (Open Access) (2006) Polimeros, 16 (4), pp. 294-298. Cited 12 times. http://www.scielo.br/pdf/po/v16n4/06.pdf doi: 10.1590/s0104-14282006000400008spa
dcterms.bibliographicCitationFerg, E.E., Bolo, L.L. A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases (2013) Polymer Testing, 32 (8), pp. 1452-1459. Cited 46 times. doi: 10.1016/j.polymertesting.2013.09.009spa
dcterms.bibliographicCitationHao, Y.-P., Yang, H.-L., Zhang, G.-B., Zhang, H.-L., Gao, G., Dong, L.-S. Rheological, thermal and mechanical properties of biodegradable poly(propylene carbonate)/polylactide/Poly(1,2-propylene glycol adipate) blown films (2015) Chinese Journal of Polymer Science (English Edition), 33 (12), pp. 1702-1712. Cited 10 times. http://www.springerlink.com/content/0256-7679 doi: 10.1007/s10118-015-1714-zspa
dcterms.bibliographicCitationKaranjikar, S.R., Lakade, S.S. Evaluation of mechanical properties of polypropylene - Acrylonitrile butadiene styrene blend reinforced with cowrie shell [Cypraeidae] powder (2021) Materials Today: Proceedings, Part 5 50, pp. 1644-1652. Cited 3 times. https://www.sciencedirect.com/journal/materials-today-proceedings doi: 10.1016/j.matpr.2021.09.134spa
dcterms.bibliographicCitationChacon, H., Cano, H., Fernández, J.H., Guerra, Y., Puello-Polo, E., Ríos-Rojas, J.F., Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength (Open Access) (2022) Polymers, 14 (9), art. no. 1753. Cited 7 times. https://www.mdpi.com/2073-4360/14/9/1753/pdf doi: 10.3390/polym14091753spa
dcterms.bibliographicCitationHernández-Fernández, J., Castro-Suarez, J.R., Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins (Open Access) (2022) International Journal of Molecular Sciences, 23 (19), art. no. 11708. Cited 7 times. http://www.mdpi.com/journal/ijms doi: 10.3390/ijms231911708spa
dcterms.bibliographicCitationHernández-Fernández, J., Rayón, E., López, J., Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants (Open Access) (2019) Macromolecular Materials and Engineering, 304 (11), art. no. 1900379. Cited 32 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1439-2054 doi: 10.1002/mame.201900379spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale (2020) Journal of Chromatography A, 1628, art. no. 461478. Cited 21 times. www.elsevier.com/locate/chroma doi: 10.1016/j.chroma.2020.461478spa
dcterms.bibliographicCitationJoaquin, H.-F., Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene (Open Access) (2022) Journal of Analytical and Applied Pyrolysis, 161, art. no. 105385. Cited 16 times. https://www.journals.elsevier.com/journal-of-analytical-and-applied-pyrolysis doi: 10.1016/j.jaap.2021.105385spa
dcterms.bibliographicCitationHernández-Fernández, J., Cano, H., Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene (2022) Polymers, 14 (18), art. no. 3910. Cited 7 times. http://www.mdpi.com/journal/polymers doi: 10.3390/polym14183910spa
dcterms.bibliographicCitationHernández-Fernández, J., Ortega-Toro, R., Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer (Open Access) (2023) Polymers, 15 (5), art. no. 1098. http://www.mdpi.com/journal/polymers doi: 10.3390/polym15051098spa
dcterms.bibliographicCitationHernández-Fernández, J., Vivas-Reyes, R., Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene (2022) International Journal of Molecular Sciences, 23 (20), art. no. 12148. Cited 8 times. http://www.mdpi.com/journal/ijms doi: 10.3390/ijms232012148spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/polym15102264
dc.subject.keywordsPlastics;spa
dc.subject.keywordsMarine Debris;spa
dc.subject.keywordsLitterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.