Mostrar el registro sencillo del ítem

dc.contributor.authorTirado-Munõz, Omar
dc.contributor.authorTirado-Ballestas, Irina
dc.contributor.authorBarbosa Lopez, Aida Liliana
dc.contributor.authorColina-Marquez, Jose
dc.date.accessioned2023-07-19T21:23:00Z
dc.date.available2023-07-19T21:23:00Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationTirado-Muñoz, O., Tirado-Ballestas, I., Barbosa Lopez, A. L., & Colina-Marquez, J. (2022). Heterogeneous Photocatalytic Pilot Plant for Cyanide decontamination: A novel solar rotary photoreactor. Journal of Solar Energy Engineering, 144(5), 051005.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12219
dc.description.abstractDuring the gold extraction in opencast mining, many hazardous substances, such as cyanide, are spilled into the water bodies. This study’s aim was to develop a novel rotary photocatalytic TiO2-based reactor to remove cyanide from polluted water using a rotary concentrator photoreactor (RCPR). This pilot-scale reactor was tested with synthetic cyanide water at concentrations from 0.05 to 50 ppm, varying the pH and commercial TiO2 load. The optimal conditions from experimental data were 87.4% of cyanide removal and catalyst load of 0.30 g/L at pH 9.5. Further, samples of cyanide water from an opencast gold mine were treated, achieving removal of 68.7% after 240 min. Our value-added is the rotary motion of the set of four glass tubes, achieving satisfactory performance, which is promising for cyanide wastewater treatment with a more compact footprint than a standard compound parabolic collector (CPC) solar photoreactor. Thus, it was possible to reduce mass and heat transfer limitations with a simple design by considering this photoreactor as a photocatalytic process intensifier. Copyright © 2022 by ASME.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceJournal of Solar Energy Engineering, Transactions of the ASMEspa
dc.titleHeterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactorspa
dcterms.bibliographicCitationDurán, A., Monteagudo, J.M., San Martín, I., Aguirre, M. Decontamination of industrial cyanide-containing water in a solar CPC pilot plant (2010) Solar Energy, 84 (7), pp. 1193-1200. Cited 17 times. doi: 10.1016/j.solener.2010.03.025spa
dcterms.bibliographicCitationBetancur-Corredor, B., Loaiza-Usuga, J.C., Denich, M., Borgemeister, C. Gold mining as a potential driver of development in Colombia: Challenges and opportunities (2018) Journal of Cleaner Production, 199, pp. 538-553. Cited 45 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2018.07.142spa
dcterms.bibliographicCitationPalacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia (2018) Chemosphere, 193, pp. 421-430. Cited 63 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2017.10.160spa
dcterms.bibliographicCitationBrüger, A., Fafilek, G., Restrepo B., O.J., Rojas-Mendoza, L. On the volatilisation and decomposition of cyanide contaminations from gold mining (2018) Science of the Total Environment, 627, pp. 1167-1173. Cited 47 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2018.01.320spa
dcterms.bibliographicCitationKuyucak, N., Akcil, A. Cyanide and removal options from effluents in gold mining and metallurgical processes (2013) Minerals Engineering, 50-51, pp. 13-29. Cited 233 times. doi: 10.1016/j.mineng.2013.05.027spa
dcterms.bibliographicCitationGupta, P., Ahammad, S.Z., Sreekrishnan, T.R. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction (2016) Journal of Hazardous Materials, 315, pp. 52-60. Cited 17 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2016.04.028spa
dcterms.bibliographicCitationRochlin, J. Informal gold miners, security and development in Colombia: Charting the way forward (2018) Extractive Industries and Society, 5 (3), pp. 330-339. Cited 20 times. http://www.journals.elsevier.com/the-extractive-industries-and-society/ doi: 10.1016/j.exis.2018.03.008spa
dcterms.bibliographicCitationMotegh, M., Van Ommen, J.R., Appel, P.W., Kreutzer, M.T. Scale-up study of a multiphase photocatalytic reactor - Degradation of cyanide in water over TiO2 (2014) Environmental Science and Technology, 48 (3), pp. 1574-1581. Cited 45 times. doi: 10.1021/es403378espa
dcterms.bibliographicCitationAugugliaro, V., Blanco Gálvez, J., Cáceres Vázquez, J., García López, E., Loddo, V., López Muñoz, M.J., Malato Rodríguez, S., (...), Soria Ruiz, J. Photocatalytic oxidation of cyanide in aqueous TiO2 suspensions irradiated by sunlight in mild and strong oxidant conditions (1999) Catalysis Today, 54 (2-3), pp. 245-253. Cited 67 times. http://www.sciencedirect.com/science/journal/09205861 doi: 10.1016/S0920-5861(99)00186-8spa
dcterms.bibliographicCitationOsathaphan, K., Chucherdwatanasak, B., Rachdawong, P., Sharma, V.K. Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate (2008) Solar Energy, 82 (11), pp. 1031-1036. Cited 34 times. doi: 10.1016/j.solener.2008.04.007spa
dcterms.bibliographicCitationZhang, Y., Zhou, J., Chen, X., Wang, L., Cai, W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway (2019) Chemical Engineering Journal, 369, pp. 745-757. Cited 339 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.03.108spa
dcterms.bibliographicCitationDíez, A.M., Moreira, F.C., Marinho, B.A., Espíndola, J.C.A., Paulista, L.O., Sanromán, M.A., Pazos, M., (...), Vilar, V.J.P. A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support (Open Access) (2018) Chemical Engineering Journal, 343, pp. 597-606. Cited 50 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2018.03.041spa
dcterms.bibliographicCitationRodríguez-Chueca, J., García-Cañibano, C., Lepistö, R.-J., Encinas, Á., Pellinen, J., Marugán, J. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes (2019) Journal of Hazardous Materials, pp. 94-102. Cited 75 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2018.04.044spa
dcterms.bibliographicCitationPacheco, J.E., Prairie, M.R., Yellowhorse, L. Photocatalytic destruction of chlorinated solwents in water with solar energy (1993) Journal of Solar Energy Engineering, Transactions of the ASME, 115 (3), pp. 123-129. Cited 37 times. doi: 10.1115/1.2930038spa
dcterms.bibliographicCitationColina-Márquez, J., MacHuca-Martínez, F., Puma, G.L. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications (2010) Environmental Science and Technology, 44 (13), pp. 5112-5120. Cited 141 times. doi: 10.1021/es100130hspa
dcterms.bibliographicCitationMalato, S., Blanco, J., Richter, C., Curcó, D., Giménez, J. Low-concentration CPC collectors for photocatalytic water detoxification: Comparison with a medium concentrating solar collector (Open Access) (1997) Water Science and Technology, 35 (4), pp. 157-164. Cited 107 times. doi: 10.1016/S0273-1223(97)00021-8spa
dcterms.bibliographicCitationAjona, J.I., Vidal, A. The use of CPC collectors for detoxification of contaminated water: Design, construction and preliminary results (2000) Solar Energy, 68 (1), pp. 109-120. Cited 58 times. doi: 10.1016/S0038-092X(99)00047-Xspa
dcterms.bibliographicCitationArce-Sarria, A., Machuca-Martínez, F., Bustillo-Lecompte, C., Hernández-Ramírez, A., Colina-Márquez, J. Degradation and loss of antibacterial activity of commercial amoxicillin with TiO2/WO3-assisted solar photocatalysis (2018) Catalysts, 8 (6), art. no. 222. Cited 30 times. http://www.mdpi.com/2073-4344/8/6/222/pdf doi: 10.3390/catal8060222spa
dcterms.bibliographicCitationBetancourt-Buitrago, L.A., Ossa-Echeverry, O.E., Rodriguez-Vallejo, J.C., Barraza, J.M., Marriaga, N., Machuca-Martínez, F. Anoxic photocatalytic treatment of synthetic mining wastewater using TiO2 and scavengers for complexed cyanide recovery (2019) Photochemical and Photobiological Sciences, 18 (4), pp. 853-862. Cited 16 times. http://pubs.rsc.org/en/journals/journal/pp doi: 10.1039/c8pp00281aspa
dcterms.bibliographicCitationCastilla-Caballero, D., Machuca-Martínez, F., Bustillo-Lecompte, C., Colina-Márquez, J. Photocatalytic degradation of commercial acetaminophen: Evaluation, modeling, and scaling-up of photoreactors (2018) Catalysts, 8 (5), art. no. 179. Cited 11 times. http://www.mdpi.com/2073-4344/8/5/179/pdf doi: 10.3390/catal8050179spa
dcterms.bibliographicCitationColina-Márquez, J., Machuca-Martínez, F., Li Puma, G. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: Photoreactor modeling and reaction kinetics constants independent of radiation field (2009) Environmental Science and Technology, 43 (23), pp. 8953-8960. Cited 82 times. http://pubs.acs.org/doi/pdfplus/10.1021/es902004b doi: 10.1021/es902004bspa
dcterms.bibliographicCitationBlanco, J., Malato, S., Fernández, P., Vidal, A., Morales, A., Trincado, P., Oliveira, J.C., (...), Rangel, C.M. Compound parabolic concentrator technology development to commercial solar detoxification applications (Open Access) (1999) Solar Energy, 67 (4-6), pp. 317-330. Cited 127 times. www.elsevier.com/inca/publications/store/3/2/9/index.htt doi: 10.1016/s0038-092x(00)00078-5spa
dcterms.bibliographicCitationColina-Márquez, J.A., Lópezvásquez, A.F., Machuca-martínez, F. Modeling of direct solar radiation in a compound parabolic collector (CPC) with the ray tracing technique (2010) DYNA (Colombia), 77 (163), pp. 132-140. Cited 15 times. http://www.scielo.org.co/pdf/dyna/v77n163/a14v77n163.pdfspa
dcterms.bibliographicCitationOchoa-Gutiérrez, K.S., Tabares-Aguilar, E., Mueses, M.Á., Machuca-Martínez, F., Li Puma, G. A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for solar photocatalytic degradation of water contaminants (2018) Chemical Engineering Journal, 341, pp. 628-638. Cited 42 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2018.02.068spa
dcterms.bibliographicCitationMueses, M.A., Machuca-Martinez, F., Hernández-Ramirez, A., Li Puma, G. Effective radiation field model to scattering - Absorption applied in heterogeneous photocatalytic reactors (Open Access) (2015) Chemical Engineering Journal, 279, pp. 442-451. Cited 25 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2015.05.056spa
dcterms.bibliographicCitationAraña, J., Doña Rodríguez, J.M., González Díaz, O., Herrera Melián, J.A., Pérez Peña, J. The effect of modifying TiO2 on catechol and resorcinol photocatalytic degradation (Open Access) (2007) Journal of Solar Energy Engineering, Transactions of the ASME, 129 (1), pp. 80-86. Cited 8 times. doi: 10.1115/1.2391225spa
dcterms.bibliographicCitationGarcía-Ripoll, A., Arques, A., Vicente, R., Domenech, A., Amat, A.M. Treatment of aqueous solutions containing four commercial pesticides by means of TiO2 solar photocatalysis (Open Access) (2008) Journal of Solar Energy Engineering, Transactions of the ASME, 130 (4), pp. 0410111-0410115. Cited 19 times. doi: 10.1115/1.2969810spa
dcterms.bibliographicCitationArellano, C.A.P., Martínez, S.S. Effects of pH on the degradation of aqueous ferricyanide by photolysis and photocatalysis under solar radiation (2010) Solar Energy Materials and Solar Cells, 94 (2), pp. 327-332. Cited 38 times. doi: 10.1016/j.solmat.2009.10.008spa
dcterms.bibliographicCitationBetancourt-Buitrago, L.A., Hernandez-Ramirez, A., Colina-Marquez, J.A., Bustillo-Lecompte, C.F., Rehmann, L., Machuca-Martinez, F. Recent developments in the photocatalytic treatment of cyanide wastewater: An approach to remediation and recovery of metals (2019) Processes, 7 (4), art. no. 225. Cited 25 times. https://res.mdpi.com/processes/processes-07-00225/article_deploy/processes-07-00225.pdf?filename=&attachment=1 doi: 10.3390/pr7040225spa
dcterms.bibliographicCitationMarugán, J., van Grieken, R., Cassano, A.E., Alfano, O.M. Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions (2008) Applied Catalysis B: Environmental, 85 (1-2), pp. 48-60. Cited 81 times. doi: 10.1016/j.apcatb.2008.06.026spa
dcterms.bibliographicCitationAhmed, S., Rasul, M.G., Brown, R., Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review (2011) Journal of Environmental Management, 92 (3), pp. 311-330. Cited 708 times. doi: 10.1016/j.jenvman.2010.08.028spa
dcterms.bibliographicCitationMueses, M.A., MacHuca-Martínez, F. Mathematical model for non-intrinsic photonic yields in heterogeneous photocatalytic reactions (Open Access) (2012) Informacion Tecnologica, 23 (3), pp. 43-50. Cited 5 times. http://www.scielo.cl/pdf/infotec/v23n3/art06.pdf doi: 10.4067/S0718-07642012000300006spa
dcterms.bibliographicCitationHernández-García, H., Löpez-Arjona, H., Rodríguez, J.F., Enríquez, R. Preliminary study of the disinfection of secondary wastewater using a solar photolytic-photocatalytic reactor (Open Access) (2008) Journal of Solar Energy Engineering, Transactions of the ASME, 130 (4), pp. 0410041-0410045. Cited 4 times. doi: 10.1115/1.2969801spa
dcterms.bibliographicCitationWang, D., Mueses, M.A., Márquez, J.A.C., Machuca-Martínez, F., Grčić, I., Peralta Muniz Moreira, R., Li Puma, G. Engineering and modeling perspectives on photocatalytic reactors for water treatment (2021) Water Research, 202, art. no. 117421. Cited 61 times. www.elsevier.com/locate/watres doi: 10.1016/j.watres.2021.117421spa
dcterms.bibliographicCitationSan Vicente, G., Morales, A., Germn, N., Suarez, S., Sánchez, B. SiO 2/TiO 2 antireflective coatings with photocatalytic properties prepared by sol-gel for solar glass covers (Open Access) (2012) Journal of Solar Energy Engineering, Transactions of the ASME, 134 (4), art. no. 041011. Cited 11 times. doi: 10.1115/1.4007298spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1115/1.4054030
dc.subject.keywordsTitanium Dioxide;spa
dc.subject.keywordsTio2;spa
dc.subject.keywordsReactorsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.