Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorZishan, Farhad
dc.contributor.authorGiral-Ramírez, Diego Armando
dc.date.accessioned2023-07-19T21:22:53Z
dc.date.available2023-07-19T21:22:53Z
dc.date.issued2022-10-05
dc.date.submitted2023-07
dc.identifier.citationMontoya, O.D.; Zishan, F.; Giral-Ramírez, D.A. Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks. Mathematics 2022, 10, 3649. https://doi.org/10.3390/math10193649spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12218
dc.description.abstractThis paper presents a new optimal power flow (OPF) formulation for monopolar DC networks using a recursive convex representation. The hyperbolic relation between the voltages and power at each constant power terminal (generator or demand) is represented as a linear constraint for the demand nodes and generators. To reach the solution for the OPF problem a recursive evaluation of the model that determines the voltage variables at the iteration (Formula presented.) ((Formula presented.)) by using the information of the voltages at the iteration t ((Formula presented.)) is proposed. To finish the recursive solution process of the OPF problem via the convex relaxation, the difference between the voltage magnitudes in two consecutive iterations less than the predefined tolerance is considered as a stopping criterion. The numerical results in the 85-bus grid demonstrate that the proposed recursive convex model can solve the classical power flow problem in monopolar DC networks, and it also solves the OPF problem efficiently with a reduced convergence error when compared with semidefinite programming and combinatorial optimization methods. In addition, the proposed approach can deal with radial and meshed monopolar DC networks without modifications in its formulation. All the numerical implementations were in the MATLAB programming environment and the convex models were solved with the CVX and the Gurobi solver. © 2022 by the authorsspa
dc.format.extent14 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMathematics - Vol. 10 No. 9 (2022)spa
dc.titleRecursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networksspa
dcterms.bibliographicCitationSimiyu, P., Xin, A., Wang, K., Adwek, G., Salman, S. Multiterminal medium voltage DC distribution network hierarchical control (2020) Electronics (Switzerland), 9 (3), art. no. 506. Cited 15 times. https://www.mdpi.com/2079-9292/9/3/506/pdf doi: 10.3390/electronics9030506spa
dcterms.bibliographicCitationGelani, H.E., Dastgeer, F., Nasir, M., Khan, S., Guerrero, J.M. Ac vs. Dc distribution efficiency: Are we on the right path? (2021) Energies, 14 (13), art. no. 4039. Cited 10 times. https://www.mdpi.com/1996-1073/14/13/4039/pdf doi: 10.3390/en14134039spa
dcterms.bibliographicCitationXu, F., Lu, Y., Huang, X., Lu, C., Qiu, P., Ding, C. Research on DC power flow controllable multi-port DC circuit breaker (2022) Energy Reports, 8, pp. 1163-1171. Cited 2 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.11.073spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids (Open Access) (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031spa
dcterms.bibliographicCitationGan, L., Low, S.H. Optimal power flow in direct current networks (2013) Proceedings of the IEEE Conference on Decision and Control, art. no. 6760774, pp. 5614-5619. Cited 15 times. ISBN: 978-146735717-3 doi: 10.1109/CDC.2013.6760774spa
dcterms.bibliographicCitationRodriguez, P., Rouzbehi, K. Multi-terminal DC grids: challenges and prospects (2017) Journal of Modern Power Systems and Clean Energy, 5 (4), pp. 515-523. Cited 109 times. www.springer.com/40565 doi: 10.1007/s40565-017-0305-0spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Garzon-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., Rodriguez Cabal, M.A. Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks (Open Access) (2020) Transactions on Energy Systems and Engineering Applications, 1 (1), pp. 13-31. Cited 13 times. revistas.utb.edu.co/tesea/ doi: 10.32397/tesea.vol1.n1.2spa
dcterms.bibliographicCitationFan, Y., Chi, Y., Li, Y., Wang, Z., Liu, H., Liu, W., Li, X. Key technologies for medium and low voltage DC distribution system (2021) Global Energy Interconnection, 4 (1), pp. 91-103. Cited 16 times. www.keaipublishing.com/en/journals/global-energy-interconnection/ doi: 10.1016/j.gloei.2021.03.009spa
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280spa
dcterms.bibliographicCitationGarces, A., Montoya, D., Torres, R. Optimal power flow in multiterminal HVDC systems considering DC/DC converters (Open Access) (2016) IEEE International Symposium on Industrial Electronics, 2016-November, art. no. 7745067, pp. 1212-1217. Cited 30 times. ISBN: 978-150900873-5 doi: 10.1109/ISIE.2016.7745067spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids (Open Access) (2019) Electric Power Systems Research, 169, pp. 18-23. Cited 39 times. doi: 10.1016/j.epsr.2018.12.008spa
dcterms.bibliographicCitationTurgut, M.S., Turgut, O.E., Afan, H.A., El-Shafie, A. A novel Master–Slave optimization algorithm for generating an optimal release policy in case of reservoir operation (Open Access) (2019) Journal of Hydrology, 577, art. no. 123959. Cited 18 times. www.elsevier.com/inca/publications/store/5/0/3/3/4/3 doi: 10.1016/j.jhydrol.2019.123959spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (Open Access) (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018spa
dcterms.bibliographicCitationMuñoz, A.A.R., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Giral-Ramírez, D.A. Optimal power dispatch of distributed generators in direct current networks using a master–slave methodology that combines the salp swarm algorithm and the successive approximation method (2021) Electronics (Switzerland), 10 (22), art. no. 2837. Cited 6 times. https://www.mdpi.com/2079-9292/10/22/2837/pdf doi: 10.3390/electronics10222837spa
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzalez, W., Grisales-Norena, L.F. Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks with CPLs (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (8), art. no. 8821394, pp. 1439-1443. Cited 15 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2938530spa
dcterms.bibliographicCitationMontoya, O.D., Giral-Ramírez, D.A., Grisales-Noreña, L.F. Optimal economic-environmental dispatch in MT-HVDC systems via sine-cosine algorithm (Open Access) (2022) Results in Engineering, 13, art. no. 100348. Cited 7 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100348spa
dcterms.bibliographicCitationChen, Y., Xiang, J., Li, Y. Socp relaxations of optimal power flow problem considering current margins in radial networks (Open Access) (2018) Energies, 11 (11), art. no. 3164. Cited 17 times. https://www.mdpi.com/1996-1073/11/11 doi: 10.3390/en11113164spa
dcterms.bibliographicCitationBenedito, E., Puerto-Flores, D.D., Dòria-Cerezo, A., Scherpen, J.M.A. Optimal Power Flow for resistive DC Networks: a Port-Hamiltonian approach (2017) IFAC-PapersOnLine, 50 (1), pp. 25-30. Cited 5 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2017.08.005spa
dcterms.bibliographicCitationLi, L. (2015) Selected Applications of Convex Optimization. Cited 16 times. Springer, Berlin/Heidelberg, Germanyspa
dcterms.bibliographicCitationMonteiro, A.C.B., Fran, R.P., Arthur, R., Iano, Y. The fundamentals and potential of heuristics and metaheuristics for multiobjective combinatorial optimization problems and solution methods (Open Access) (2022) Multi-Objective Combinatorial Optimization Problems and Solution Methods, pp. 9-29. Cited 3 times. https://www.sciencedirect.com/book/9780128237991 ISBN: 978-012823799-1; 978-012823800-4 doi: 10.1016/B978-0-12-823799-1.00002-4spa
dcterms.bibliographicCitationZhang, H., Vittal, V., Heydt, G.T., Quintero, J. A relaxed AC optimal power flow model based on a Taylor series (Open Access) (2013) 2013 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2013, art. no. 6698739. Cited 27 times. ISBN: 978-147991347-3 doi: 10.1109/ISGT-Asia.2013.6698739spa
dcterms.bibliographicCitationLiu, J., Cui, B., Molzahn, D.K., Chen, C., Lu, X., Qiu, F. Optimal Power Flow in DC Networks With Robust Feasibility and Stability Guarantees (Open Access) (2022) IEEE Transactions on Control of Network Systems, 9 (2), pp. 904-916. Cited 3 times. http://ieeexplore.ieee.org/servlet/opac?punumber=6509490 doi: 10.1109/TCNS.2021.3124932spa
dcterms.bibliographicCitationFantauzzi, M., Lauria, D., Mottola, F., Scalfati, A. Sizing energy storage systems in DC networks: A general methodology based upon power losses minimization (2017) Applied Energy, 187, pp. 862-872. Cited 24 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2016.11.044spa
dcterms.bibliographicCitationLi, H., Wang, X., Lin, J., Wu, L., Liu, T. An improved Newton-Raphson based linear power flow method for DC grids with dispatchable DGs and ZIP loads (Open Access) (2022) COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 41 (5), pp. 1297-1312. http://www.emeraldinsight.com/info/journals/compel/compel.jsp doi: 10.1108/COMPEL-06-2021-0195spa
dcterms.bibliographicCitationGarcés, A., Rodriguez-Garcia, L. An Approach for Nodal Admittance Matrix Real-Time Estimation on DC Microgrids (2019) IEEE Green Technologies Conference, 2019-April, art. no. 8767140. Cited 5 times. http://ieeexplore.ieee.org ISBN: 978-172811457-6 doi: 10.1109/GreenTech.2019.8767140spa
dcterms.bibliographicCitationLiu, B., Wei, W., Liu, F. Locating all real solutions of power flow equations: A convex optimisation-based method (Open Access) (2018) IET Generation, Transmission and Distribution, 12 (10), pp. 2273-2279. Cited 9 times. www.ietdl.org/IET-GTD doi: 10.1049/iet-gtd.2017.1870spa
dcterms.bibliographicCitationGarces, A. A Linear Three-Phase Load Flow for Power Distribution Systems (2016) IEEE Transactions on Power Systems, 31 (1), art. no. 7027253, pp. 827-828. Cited 213 times. doi: 10.1109/TPWRS.2015.2394296spa
dcterms.bibliographicCitationMedina-Quesada, Á., Montoya, O.D., Hernández, J.C. Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals (Open Access) (2022) Sensors, 22 (8), art. no. 2914. Cited 10 times. https://www.mdpi.com/1424-8220/22/8/2914/pdf doi: 10.3390/s22082914spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges (Open Access) (2020) International Journal of Electrical Power and Energy Systems, 123, art. no. 106299. Cited 29 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106299spa
dcterms.bibliographicCitationAttia, A.-F., El Sehiemy, R.A., Hasanien, H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm (2018) International Journal of Electrical Power and Energy Systems, 99, pp. 331-343. Cited 257 times. doi: 10.1016/j.ijepes.2018.01.024spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/math10193649
dc.subject.keywordsConvex optimizationspa
dc.subject.keywordsMonopolar DC networksspa
dc.subject.keywordsOptimal power flow solutionspa
dc.subject.keywordsPower losses minimizationspa
dc.subject.keywordsRecursive convex formulationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.