Mostrar el registro sencillo del ítem

dc.contributor.authorSalas, Alexis
dc.contributor.authorJaramillo, Andrés Felipe
dc.contributor.authorPalacio, Daniel Andrés
dc.contributor.authorDíaz-Gómez, Andrés
dc.contributor.authorRojas, David
dc.contributor.authorMedina, Carlos
dc.contributor.authorPérez-Tijerina, Eduardo
dc.contributor.authorSolís-Pomar, Francisco
dc.contributor.authorMeléndrez, Manuel Francisco
dc.date.accessioned2023-07-19T21:22:39Z
dc.date.available2023-07-19T21:22:39Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationSalas, A., Jaramillo, A. F., Palacio, D. A., Díaz-Gómez, A., Rojas, D., Medina, C., ... & Meléndrez, M. F. (2022). Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers, 14(8), 1579.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12216
dc.description.abstractIn this work, the surface modification of zinc oxide nanoparticles (ZnO-NPs) with 3-glycidyloxy-propyl-trimethoxysilane (GPTMS) was investigated. The ZnO-NPs were synthesized using the physical method of continuous arc discharge in controlled atmosphere (DARC-AC). The surface modification was carried out using a chemical method with constant agitation for 24 h at room temperature. This surface functionalization of zinc oxide nanoparticles (ZnO-NPs-GPTMS) was experimentally confirmed by infrared spectroscopy (FT-IR), TGA, and XRD, and its morphological characterization was performed with SEM. The increase in mechanical bending properties in the two final hybrid materials compared to the base polymers was verified. An average increase of 67% was achieved with a moderate decrease in ductility. In the case of compressive strength, they showed mixed results, maintaining the properties. With respect to thermal properties, it was observed that inorganic reinforcement conferred resistance to degradation on the base material, giving a greater resistance to high temperatures. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourcePolymersspa
dc.titleHybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matricesspa
dcterms.bibliographicCitationKango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites - A review (2013) Progress in Polymer Science, 38 (8), pp. 1232-1261. Cited 1631 times. doi: 10.1016/j.progpolymsci.2013.02.003spa
dcterms.bibliographicCitationBakkardouch, F.E., Atmani, H., El Khalloufi, M., Jouaiti, A., Laallam, L. Modified cellulose-based hybrid materials: Effect of ZnO and CuO nanoparticles on the thermal insulation property (2021) Materials Chemistry and Physics, 271, art. no. 124881. Cited 5 times. http://www.journals.elsevier.com/materials-chemistry-and-physics doi: 10.1016/j.matchemphys.2021.124881spa
dcterms.bibliographicCitationAfshari, A., Akbari, M., Toghraie, D., Yazdi, M.E. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%): New correlation and margin of deviation (2018) Journal of Thermal Analysis and Calorimetry, 132 (2), pp. 1001-1015. Cited 159 times. http://www.springer.com/sgw/cda/frontpage/0,11855,1-40109-70-35752391-0,00.html doi: 10.1007/s10973-018-7009-1spa
dcterms.bibliographicCitationZawisza, B., Sitko, R., Queralt, I., Margui, E., Gagor, A. Cellulose mini-membranes modified with TiO2 for separation, determination, and speciation of arsenates and selenites (2020) Microchimica Acta, 187 (8), art. no. 430. Cited 11 times. http://www.springer/at/mca doi: 10.1007/s00604-020-04387-4spa
dcterms.bibliographicCitationIngle, A.P., Duran, N., Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review (2014) Applied Microbiology and Biotechnology, 98 (3), pp. 1001-1009. Cited 355 times. link.springer.de/link/service/journals/00253/index.htm doi: 10.1007/s00253-013-5422-8spa
dcterms.bibliographicCitationEl-Nahhal, I.M., Salem, J.K., Kuhn, S., Hammad, T., Hempelmann, R., Al Bhaisi, S. Synthesis and characterization of silica coated and functionalized silica coated zinc oxide nanomaterials (2016) Powder Technology, 287, pp. 439-446. Cited 46 times. www.elsevier.com/locate/powtec doi: 10.1016/j.powtec.2015.09.042spa
dcterms.bibliographicCitationJi, T., Ma, C., Brisbin, L., Mu, L., Robertson, C.G., Dong, Y., Zhu, J. Organosilane grafted silica: Quantitative correlation of microscopic surface characters and macroscopic surface properties (2017) Applied Surface Science, 399, pp. 565-572. Cited 21 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2016.11.241spa
dcterms.bibliographicCitationJaramillo, A.F., Riquelme, S.A., Sánchez-Sanhueza, G., Medina, C., Solís-Pomar, F., Rojas, D., Montalba, C., (...), Pérez-Tijerina, E. Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly(butylene adipate-co-terephthalate) Using Cu and Cu/Cu2O Nanoparticles and CuSO4 (2019) Nanoscale Research Letters, 14, art. no. 158. Cited 23 times. http://www.springer.com/materials/nanotechnology/journal/11671 doi: 10.1186/s11671-019-2987-xspa
dcterms.bibliographicCitationLi, W., Song, B., Zhang, S., Zhang, F., Liu, C., Zhang, N., Yao, H., (...), Shi, Y. Using 3-isocyanatopropyltrimethoxysilane to decorate graphene oxide with nano-titanium dioxide for enhancing the anti-corrosion properties of epoxy coating (2020) Polymers, 12 (4), art. no. 837. Cited 32 times. https://www.mdpi.com/2073-4360/12/4/837 doi: 10.3390/POLYM12040837spa
dcterms.bibliographicCitationAmirbeygi, H., Khosravi, H., Tohidlou, E. Reinforcing effects of aminosilane-functionalized graphene on the tribological and mechanical behaviors of epoxy nanocomposites (2019) Journal of Applied Polymer Science, 136 (18), art. no. 47410. Cited 53 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.47410spa
dcterms.bibliographicCitationToledo, L., Palacio, D., Sánchez, S., Urbano, B.F. Pluronic-coated nanoparticles for enhanced spatial distribution and increased softness of nanocomposite hydrogels (2020) Journal of Materials Science, 55 (21), pp. 8968-8982. Cited 7 times. www.springer.com/journal/10853 doi: 10.1007/s10853-020-04658-8spa
dcterms.bibliographicCitationJaramillo, A.F., Medina, C., Flores, P., Canales, C., Maldonado, C., Castaño Rivera, P., Rojas, D., (...), Meléndrez, M.F. Improvement of thermomechanical properties of composite based on hydroxyapatite functionalized with alkylsilanes in epoxy matrix (2020) Ceramics International, 46 (6), pp. 8368-8378. Cited 10 times. https://www.journals.elsevier.com/ceramics-international doi: 10.1016/j.ceramint.2019.12.069spa
dcterms.bibliographicCitationSolis-Pomar, F., Jaramillo, A., Lopez-Villareal, J., Medina, C., Rojas, D., Mera, A.C., Meléndrez, M.F., (...), Pérez-Tijerina, E. Rapid synthesis and photocatalytic activity of ZnO nanowires obtained through microwave-assisted thermal decomposition (2016) Ceramics International, 42 (16), pp. 18045-18052. Cited 28 times. doi: 10.1016/j.ceramint.2016.08.084spa
dcterms.bibliographicCitationMeléndrez, M.F., Solis-Pomar, F., Gutierrez-Lazos, C.D., Flores, P., Jaramillo, A.F., Fundora, A., Pérez-Tijerina, E. A new synthesis route of ZnO nanonails via microwave plasma-assisted chemical vapor deposition (2016) Ceramics International, Part B 42 (1), pp. 1160-1168. Cited 26 times. doi: 10.1016/j.ceramint.2015.09.046spa
dcterms.bibliographicCitationRamezanzadeh, B., Attar, M.M., Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite (2011) Journal of Thermal Analysis and Calorimetry, 103 (2), pp. 731-739. Cited 116 times. doi: 10.1007/s10973-010-0996-1spa
dcterms.bibliographicCitationSouza, V.G.L., Fernando, A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food-A review (2016) Food Packaging and Shelf Life, 8, pp. 63-70. Cited 218 times. http://www.journals.elsevier.com/food-packaging-and-shelf-life/ doi: 10.1016/j.fpsl.2016.04.001spa
dcterms.bibliographicCitationLi, X., Zhou, Q., Huang, Y., Yang, J. Nanoindentation and abrasion in Fe3O4/rGO reinforced epoxy electromagnetic protective coatings (Open Access) (2021) Journal of Alloys and Compounds, 887, art. no. 161277. Cited 15 times. https://www.journals.elsevier.com/journal-of-alloys-and-compounds doi: 10.1016/j.jallcom.2021.161277spa
dcterms.bibliographicCitationPrabhu, S., Bubbly, S.G., Gudennavar, S.B. Thermal, mechanical and γ-ray shielding properties of micro- and nano-Ta2O5 loaded DGEBA epoxy resin composites (2021) Journal of Applied Polymer Science, 138 (44), art. no. 51289. Cited 8 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.51289spa
dcterms.bibliographicCitationChen, S., Wang, X., Zhu, G., Lu, Z., Zhang, Y., Zhao, X., Hou, B. Developing multi-wall carbon nanotubes/Fusion-bonded epoxy powder nanocomposite coatings with superior anti-corrosion and mechanical properties (2021) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, art. no. 127309. Cited 15 times. www.elsevier.com/locate/colsurfa doi: 10.1016/j.colsurfa.2021.127309spa
dcterms.bibliographicCitationThipperudrappa, S., Ullal Kini, A., Hiremath, A. Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber-reinforced epoxy nanocomposites (2020) Polymer Composites, 41 (1), pp. 174-181. Cited 35 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1548-0569 doi: 10.1002/pc.25357spa
dcterms.bibliographicCitationWang, T., Liu, C., Li, D., Hou, Y., Zhang, G., Zhang, B. Nano ZnO/epoxy coating to promote surface charge dissipation on insulators in DC gas-insulated systems (2020) IEEE Transactions on Dielectrics and Electrical Insulation, 27 (4), art. no. 9160431, pp. 1322-1329. Cited 35 times. https://ieeexplore.ieee.org/servlet/opac?punumber=94 doi: 10.1109/TDEI.2020.008793spa
dcterms.bibliographicCitationSamad, U.A., Alam, M.A., Anis, A., Sherif, E.S.M., Al-Mayman, S.I., Al-Zahrani, S.M. Effect of incorporated ZnO nanoparticles on the corrosion performance of SiO2 nanoparticle-based mechanically robust epoxy coatings (2020) Materials, 13 (17), art. no. 3767. Cited 9 times. https://res.mdpi.com/d_attachment/materials/materials-13-03767/article_deploy/materials-13-03767.pdf doi: 10.3390/MA13173767spa
dcterms.bibliographicCitationYari, H., Rostami, M. Enhanced weathering performance of epoxy/ZnO nanocomposite coatings via functionalization of ZnO UV blockers with amino and glycidoxy silane coupling agents (Open Access) (2020) Progress in Organic Coatings, 147, art. no. 105773. Cited 18 times. www.elsevier.com/locate/porgcoat doi: 10.1016/j.porgcoat.2020.105773spa
dcterms.bibliographicCitationYap, S.W., Johari, N., Mazlan, S.A., Hassan, N.A. Mechanochemical durability and self-cleaning performance of zinc oxide-epoxy superhydrophobic coating prepared via a facile one-step approach (2021) Ceramics International, 47 (11), pp. 15825-15833. Cited 25 times. https://www.journals.elsevier.com/ceramics-international doi: 10.1016/j.ceramint.2021.02.156spa
dcterms.bibliographicCitationJaramillo, A.F., Baez-Cruz, R., Montoya, L.F., Medinam, C., Pérez-Tijerina, E., Salazar, F., Rojas, D., (...), Melendrez, M.F. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy (2017) Ceramics International, 43 (15), pp. 11838-11847. Cited 73 times. doi: 10.1016/j.ceramint.2017.06.027spa
dcterms.bibliographicCitationMedinaM, C., Rojas, D., Flores, P., Peréz-Tijerina, E., Meléndrez, M.F. Effect of ZnO nanoparticles obtained by arc discharge on thermo-mechanical properties of matrix thermoset nanocomposites (2016) Journal of Applied Polymer Science, 133 (30), art. no. 43631. Cited 13 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4628 doi: 10.1002/app.43631spa
dcterms.bibliographicCitationAmaria, A., Nuryono, N., Suyanta, S. Preparation of L-arginine-modified silica-coated magnetite nanoparticles for Au(III) adsorption (2017) Oriental Journal of Chemistry, 33 (1), pp. 384-395. Cited 13 times. http://www.orientjchem.org/pdf/vol33no1/OJC_Vol33_No1_p_384-395.pdf doi: 10.13005/ojc/330146spa
dcterms.bibliographicCitationGonzález, M.G., Cabanelas, J.C., Baselga, J. Applications of FTIR on Epoxy Resins-Identification, Monitoring the Curing Process, Phase Separation and Water Uptake (2012) Infrared Spectroscopy-Materials Science, Engineering and Technology, 2, pp. 261-284. Cited 395 times. Theophanides, T., Ed.; InTech: Rijeka, Croatiaspa
dcterms.bibliographicCitationSuresh, S., Nisha, P., Saravanan, P., Jayamoorthy, K., Karthikeyan, S. Investigation of the Thermal and Dielectric Behavior of Epoxy Nano-Hybrids by using Silane Modified Nano-ZnO (2018) Silicon, 10 (4), pp. 1291-1303. Cited 15 times. http://www.springer.com/chemistry/inorganic/journal/12633?cm_mmc=AD-_-Journal-_-PSE10941_V1-_-12633 doi: 10.1007/s12633-017-9604-3spa
dcterms.bibliographicCitationAfzal, A., Siddiqi, H.M., Saeed, S., Ahmad, Z. The influence of epoxy functionalized silica nanoparticles on stress dispersion and crack resistance in epoxy-based hybrids (Open Access) (2011) Materials Express, 1 (4), pp. 299-306. Cited 18 times. http://docserver.ingentaconnect.com/deliver/connect/asp/21585849/v1n4/s7.pdf? doi: 10.1166/mex.2011.1042spa
dcterms.bibliographicCitationMacan, J., Paljar, K., Burmas, B., Špehar, G., Leskovac, M., Gajović, A. Epoxy-matrix composites filled with surface-modified SiO2 nanoparticles (Open Access) (2017) Journal of Thermal Analysis and Calorimetry, 127 (1), pp. 399-408. Cited 19 times. http://www.springer.com/sgw/cda/frontpage/0,11855,1-40109-70-35752391-0,00.html doi: 10.1007/s10973-016-5976-7spa
dcterms.bibliographicCitationKorayem, A.H., Barati, M.R., Simon, G.P., Zhao, X.L., Duan, W.H. Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch (Open Access) (2014) Composites Part A: Applied Science and Manufacturing, 61, pp. 126-133. Cited 56 times. doi: 10.1016/j.compositesa.2014.02.016spa
dcterms.bibliographicCitationTian, Y., Zhang, H., Zhao, J., Li, T., Bie, B.-X., Luo, S.-N., Zhang, Z. High strain rate compression of epoxy based nanocomposites (2016) Composites Part A: Applied Science and Manufacturing, 90, pp. 62-70. Cited 29 times. doi: 10.1016/j.compositesa.2016.06.008spa
dcterms.bibliographicCitationGómez-Del Río, T., Rodríguez, J., Pearson, R.A. Compressive properties of nanoparticle modified epoxy resin at different strain rates (2014) Composites Part B: Engineering, 57, pp. 173-179. Cited 50 times. doi: 10.1016/j.compositesb.2013.10.002spa
dcterms.bibliographicCitationYang, P., Wang, G., Xia, X., Takezawa, Y., Wang, H., Yamada, S., Du, Q., (...), Zhong, W. Preparation and thermo-mechanical properties of heat-resistant epoxy/silica hybrid materials (2008) Polymer Engineering and Science, 48 (6), pp. 1214-1221. Cited 37 times. doi: 10.1002/pen.21081spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/polym14081579
dc.subject.keywordsOrganic Coatings;spa
dc.subject.keywordsCorrosion Protection;spa
dc.subject.keywordsCorrosionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.