Mostrar el registro sencillo del ítem

dc.contributor.authorOcampo-Toro, Jauder Alexander
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGrisales-Norena, Luis Fernando
dc.date.accessioned2023-07-19T21:22:30Z
dc.date.available2023-07-19T21:22:30Z
dc.date.issued2022-08-12
dc.date.submitted2023-07
dc.identifier.citationOcampo-Toro, J.A., Montoya, O.D., Grisales-Norena, L.F. Recursive convex approximations for optimal power flow solution in direct current networks (2022) International Journal of Electrical and Computer Engineering, 12 (6), pp. 5674-5682. DOI: 10.11591/ijece.v12i6.pp5674-5682spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12215
dc.description.abstractThe optimal power flow problem in direct current (DC) networks considering dispersal generation is addressed in this paper from the recursive programming point of view. The nonlinear programming model is transformed into two quadratic programming approximations that are convex since the power balance constraint is approximated between affine equivalents. These models are recursively (iteratively) solved from the initial point vt equal to 1.0 pu with t equal to 0, until that the error between both consecutive voltage iterations reaches the desired convergence criteria. The main advantage of the proposed quadratic programming models is that the global optimum finding is ensured due to the convexity of the solution space around vt. Numerical results in the DC version of the IEEE 69-bus system demonstrate the effectiveness and robustness of both proposals when compared with classical metaheuristic approaches such as particle swarm and antlion optimizers, among others. All the numerical validations are carried out in the MATLAB programming environment version 2021b with the software for disciplined convex programming known as CVX tool in conjuction with the Gurobi solver version 9.0; while the metaheuristic optimizers are directly implemented in the MATLAB scripts.spa
dc.format.extent9 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Electrical and Computer Engineering - Vol. 12 No. 6 (2022)spa
dc.titleRecursive convex approximations for optimal power flow solution in direct current networksspa
dcterms.bibliographicCitationArévalo, J., Santos, F., Rivera, S. Application of analytical uncertainty costs of solar, wind and electric vehicles in optimal power dispatch (in Spanish) (2017) Ingeniería, 22 (3), pp. 324-346. Cited 12 times. Sepspa
dcterms.bibliographicCitationZhou, W., Sun, G. Computer Network Dynamic Balance Flow Distribution Based on Closed-Loop Particle Swarm Feedback Model (2021) Mathematical Problems in Engineering, 2021, art. no. 1772182. http://www.hindawi.com/journals/mpe/contents.html doi: 10.1155/2021/1772182spa
dcterms.bibliographicCitationAbdelbadea, M., Boghdady, T.A., Ibrahim, D.K. Enhancing active radial distribution networks by optimal sizing and placement of DGs using modified crow search algorithm (2019) Indonesian Journal of Electrical Engineering and Computer Science, 16 (3), pp. 1179-1188. Cited 17 times. http://ijeecs.iaescore.com/index.php/IJEECS/article/view/19612/13154 doi: 10.11591/ijeecs.v16.i3.pp1179-1188spa
dcterms.bibliographicCitationGarces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430spa
dcterms.bibliographicCitationSimpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (Open Access) (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537spa
dcterms.bibliographicCitationWang, P., Goel, L., Liu, X., Choo, F.H. Harmonizing AC and DC: A Hybrid AC/DC future grid solution (Open Access) (2013) IEEE Power and Energy Magazine, 11 (3), art. no. 6506881, pp. 76-83. Cited 251 times. doi: 10.1109/MPE.2013.2245587spa
dcterms.bibliographicCitationVanin, M., Ergun, H., D'hulst, R., Van Hertem, D. Comparison of Linear and Conic Power Flow Formulations for Unbalanced Low Voltage Network Optimization (Open Access) (2020) Electric Power Systems Research, 189, art. no. 106699. Cited 13 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106699spa
dcterms.bibliographicCitationEsteban, F.D., Serra, F.M., De Angelo, C.H. Control of a DC-DC dual active bridge converter in DC microgrids applications (Open Access) (2021) IEEE Latin America Transactions, 19 (8), art. no. 9475856, pp. 1261-1269. Cited 16 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2021.9475856spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Garzon-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., Rodriguez Cabal, M.A. Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks (2020) Transactions on Energy Systems and Engineering Applications, 1 (1), pp. 13-31. Cited 13 times. revistas.utb.edu.co/tesea/ doi: 10.32397/tesea.vol1.n1.2spa
dcterms.bibliographicCitationRíos, S.J., Pagano, D.J., Lucas, K.E. Bidirectional power sharing for dc microgrid enabled by dual active bridge dc-dc converter (Open Access) (2021) Energies, 14 (2), art. no. 404. Cited 22 times. https://www.mdpi.com/1996-1073/14/2/404/pdf doi: 10.3390/en14020404spa
dcterms.bibliographicCitationSuyono, H., Hasanah, R.N., Mudjirahardjo, P., Fauzan Edy Purnomo, M., Uliyani, S., Musirin, I., Awalin, L.J. Enhancement of the power system distribution reliability using ant colony optimization and simulated annealing methods (Open Access) (2019) Indonesian Journal of Electrical Engineering and Computer Science, 17 (2), pp. 877-885. Cited 7 times. http://ijeecs.iaescore.com/index.php/IJEECS/article/view/20665/13308 doi: 10.11591/ijeecs.v17.i2.pp877-885spa
dcterms.bibliographicCitationLotfi, H., Khodaei, A. AC versus DC microgrid planning (2017) IEEE Transactions on Smart Grid, 8 (1), pp. 296-304. Cited 299 times. doi: 10.1109/TSG.2015.2457910spa
dcterms.bibliographicCitationGarzon–Rivera, O.D., Grisales–Nore˜na, L.F., Ocampo, J.A., Montoya, O.D., Rojas–Montano, J.J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer (Open Access) (2020) Statistics, Optimization and Information Computing, 8 (4), pp. 846-857. Cited 10 times. www.iapress.org/index.php/soic/index doi: 10.19139/soic-2310-5070-1022spa
dcterms.bibliographicCitationHassan, S.K.A., Tuaimah, F.M. Optimal location of unified power flow controller genetic algorithm based (2020) International Journal of Power Electronics and Drive Systems, 11 (2), pp. 886-894. Cited 6 times. http://ijpeds.iaescore.com/index.php/IJPEDS/article/download/20472/13143 doi: 10.11591/ijpeds.v11.i2.pp886-894spa
dcterms.bibliographicCitationRizk-Allah, R.M., El-Sehiemy, R.A., Wang, G.-G. A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution (Open Access) (2018) Applied Soft Computing Journal, 63, pp. 206-222. Cited 123 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2017.12.002spa
dcterms.bibliographicCitationZou, D., Li, S., Wang, G.-G., Li, Z., Ouyang, H. An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects (Open Access) (2016) Applied Energy, 181, pp. 375-390. Cited 99 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2016.08.067spa
dcterms.bibliographicCitationLiu, X., Wang, X., Wen, J. Optimal power flow of DC-grid based on improved PSO algorithm (Open Access) (2017) Journal of Electrical Engineering and Technology, 12 (4), pp. 1586-1591. Cited 7 times. http://www.jeet.or.kr/ltkPSWeb/pub/pubfpfile.aspx?ppseq=1824 doi: 10.5370/JEET.2017.12.4.1586spa
dcterms.bibliographicCitationVelasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (Open Access) (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069spa
dcterms.bibliographicCitationRosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (Open Access) (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703spa
dcterms.bibliographicCitationMontoya, O.D., Giral-Ramírez, D.A., Grisales-Noreña, L.F. Optimal economic-environmental dispatch in MT-HVDC systems via sine-cosine algorithm (Open Access) (2022) Results in Engineering, 13, art. no. 100348. Cited 7 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100348spa
dcterms.bibliographicCitationMarańda, W., De Mey, G., De Vos, A. Optimization of the master-slave inverter system for grid-connected photovoltaic plants (1998) Energy Conversion and Management, 39 (12), pp. 1239-1246. Cited 19 times. doi: 10.1016/S0196-8904(98)00012-0spa
dcterms.bibliographicCitationNoureddine, T., Djamel, L. Load flow analysis using newton raphson method in presence of distributed generation (Open Access) (2021) International Journal of Power Electronics and Drive Systems, 12 (1), pp. 489-498. Cited 5 times. http://ijpeds.iaescore.com/index.php/IJPEDS/article/view/20844/13369 doi: 10.11591/ijpeds.v12.i1.pp489-498spa
dcterms.bibliographicCitationGallego-Pareja, L. A., Lopez-Lezama, J. M., Gomez-Carmona, O. Optimal placement of capacitors, voltage regulators, and distributed generators in electric power distribution systems (2020) Ingeniería, 25 (3), pp. 334-354. Cited 9 times. Octspa
dcterms.bibliographicCitationLavaei, J., Low, S.H. Zero duality gap in optimal power flow problem (Open Access) (2012) IEEE Transactions on Power Systems, 27 (1), art. no. 5971792, pp. 92-107. Cited 875 times. doi: 10.1109/TPWRS.2011.2160974spa
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280spa
dcterms.bibliographicCitationSkolfield, J.K., Escobedo, A.R. Operations research in optimal power flow: A guide to recent and emerging methodologies and applications (2022) European Journal of Operational Research, 300 (2), pp. 387-404. Cited 15 times. https://www.journals.elsevier.com/european-journal-of-operational-research/ doi: 10.1016/j.ejor.2021.10.003spa
dcterms.bibliographicCitationGarces, A. A quadratic approximation for the optimal power flow in power distribution systems (Open Access) (2016) Electric Power Systems Research, 130, pp. 222-229. Cited 37 times. doi: 10.1016/j.epsr.2015.09.006spa
dcterms.bibliographicCitationDeng, L., Sun, H., Li, B., Sun, Y., Yang, T., Zhang, X. Optimal Operation of Integrated Heat and Electricity Systems: A Tightening McCormick Approach (Open Access) (2021) Engineering, 7 (8), pp. 1076-1086. Cited 15 times. http://www.journals.elsevier.com/engineering/ doi: 10.1016/j.eng.2021.06.006spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.11591/ijece.v12i6.pp5674-5682
dc.subject.keywordsApproximationspa
dc.subject.keywordsDirect current networksspa
dc.subject.keywordsMetaheuristic optimizationspa
dc.subject.keywordsOptimal power flow problemspa
dc.subject.keywordsProgrammingspa
dc.subject.keywordsQuadratic convexspa
dc.subject.keywordsRecursive convexspa
dc.subject.keywordsTechniquesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.