Mostrar el registro sencillo del ítem

dc.contributor.authorHernández-Fernández, Joaquín
dc.contributor.authorPuello-Polo, Esneyder
dc.contributor.authorLópez-Martínez, Juan
dc.date.accessioned2023-07-19T21:21:35Z
dc.date.available2023-07-19T21:21:35Z
dc.date.issued2023-01-09
dc.date.submitted2023-07
dc.identifier.citationHernández-Fernández, J.; Puello-Polo, E.; López-Martínez, J. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability 2023, 15, 1247. https://doi.org/10.3390/su15021247spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12212
dc.description.abstractAdditives play an important role in the production of plastic materials through their application, in which the mechanical, thermal, and physical properties of polymers are improved, making them last longer and be more resistant. During the synthesis of polypropylene resins, the remains of additives that are not absorbed by the resin are removed in the purification stage and end up in the wastewater. In this article, the recovery of (Z)-13-docosenamide from the wastewater from the process, its purification, and its application in the process was carried out. For the extraction of the additive, solid phase extraction (SPE) was used, and to guarantee the purity of (Z)-13-docosenamide, techniques such as high performance liquid chromatography (HPLC), Fourier transform infrared (FTIR), gas chromatography-mass spectrometry (GC/MS), thermogravimetric (TG) coupled with a gas chromatography-mass spectrometry (GC/MS), and differential scanning calorimetry (DSC) were used. The recovered erucamide was added to the PP between 0.05 and 0.3% w/w. The effects of the properties of the virgin polypropylene with the recovered additive were also evaluated to determine its effectiveness in improving the properties of the material by measuring the coefficient of friction (CoF) as well as the mechanical properties and wettability through atomic force microscopy (AFM) and the contact angle, respectively. It was discovered that using these techniques, it is possible to recover approximately 95% of the additive present in the water while keeping the material’s properties within the desired limitsspa
dc.format.extent16 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSustainability (Switzerland) - Vol. 15 No. 2 (2023)spa
dc.titleRecovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applicationsspa
dcterms.bibliographicCitationChamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., (...), Suh, S. Degradation Rates of Plastics in the Environment (2020) ACS Sustainable Chemistry and Engineering, 8 (9), pp. 3494-3511. Cited 994 times. http://pubs.acs.org/journal/ascecg doi: 10.1021/acssuschemeng.9b06635spa
dcterms.bibliographicCitationHahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling (2018) Journal of Hazardous Materials, 344, pp. 179-199. Cited 1557 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2017.10.014spa
dcterms.bibliographicCitationBashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., Dar, S.A. Concerns and threats of contamination on aquatic ecosystems (2020) Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation, pp. 1-26. Cited 159 times. http://www.springer.com/in/book/9783030356903 ISBN: 978-303035691-0; 978-303035690-3 doi: 10.1007/978-3-030-35691-0_1spa
dcterms.bibliographicCitationJaiswal, S., Kumar Gupta, G., Panchal, K., Mandeep, Shukla, P. Synthetic Organic Compounds From Paper Industry Wastes: Integrated Biotechnological Interventions (2020) Frontiers in Bioengineering and Biotechnology, 8, art. no. 592939. Cited 4 times. http://journal.frontiersin.org/journal/bioengineering-and-biotechnology#archive doi: 10.3389/fbioe.2020.592939spa
dcterms.bibliographicCitationPersistent Organic Pollutants: A Global Issue, A Global Response. Cited 130 times. accessed on 11 August 2022 https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-responsespa
dcterms.bibliographicCitationGrobelak, A., Kowalska, A. Emerging environmental contaminants-current status, challenges, and technological solutions (2022) Emerging Contaminants in the Environment: Challenges and Sustainable Practices, pp. 39-53. https://www.sciencedirect.com/book/9780323851602 ISBN: 978-032385160-2; 978-032385981-3 doi: 10.1016/B978-0-323-85160-2.00010-Xspa
dcterms.bibliographicCitationHernández-Fernandez, J., Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography (2019) Journal of Chromatography A, 1607, art. no. 460442. Cited 29 times. www.elsevier.com/locate/chroma doi: 10.1016/j.chroma.2019.460442spa
dcterms.bibliographicCitationDaughton, C.G. Non-regulated water contaminants: Emerging research (2004) Environmental Impact Assessment Review, 24 (7-8), pp. 711-732. Cited 407 times. www.elsevier.com/inca/publications/store/5/0/5/7/1/8 doi: 10.1016/j.eiar.2004.06.003spa
dcterms.bibliographicCitationHurtado, C., Domínguez, C., Pérez-Babace, L., Cañameras, N., Comas, J., Bayona, J.M. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions (2016) Journal of Hazardous Materials, 305, pp. 139-148. Cited 100 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2015.11.039spa
dcterms.bibliographicCitationKhetan, S.K., Collins, T.J. Human pharmaceuticals in the aquatic environment: A challenge to green chemisty (2007) Chemical Reviews, 107 (6), pp. 2319-2364. Cited 910 times. doi: 10.1021/cr020441wspa
dcterms.bibliographicCitationRichardson, S.D., Ternes, T.A. Water Analysis: Emerging Contaminants and Current Issues (2018) Analytical Chemistry, 90 (1), pp. 398-428. Cited 407 times. http://pubs.acs.org/journal/ancham doi: 10.1021/acs.analchem.7b04577spa
dcterms.bibliographicCitationBotalova, O., Schwarzbauer, J., Frauenrath, T., Dsikowitzky, L. Identification and chemical characterization of specific organic constituents of petrochemical effluents (2009) Water Research, 43 (15), pp. 3797-3812. Cited 75 times. www.elsevier.com/locate/watres doi: 10.1016/j.watres.2009.06.006spa
dcterms.bibliographicCitationFörstner, U. Elements and Compounds in Waste Materials (2004) Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, 2Nd, pp. 163-197. Cited 3 times. Wiley Online Library: Hoboken, NJ, USA, ISBN 978-3-527-30459-2spa
dcterms.bibliographicCitationAhmed, J., Thakur, A., Goyal, A. Biological Treatment of Industrial Wastewater (2021) Chapter 1 Industrial Wastewater and Its Toxic Effects, pp. 1-14. Cited 48 times. Royal Society of Chemistry: London, UK, [CrossRef]spa
dcterms.bibliographicCitationBart, J.C. Appendix II: Functionality of Common Additives Used in Commercial Thermoplastics, Rubbers and Thermosetting Resins (2005) Additives in Polymers, pp. 773-791. John Wiley & Sons, Ltd.: Hoboken, NJ, USA, ISBN 978-0-470-01206-2spa
dcterms.bibliographicCitation(1994) Polymer Science and Engineering: The Shifting Research Frontiers. Cited 71 times. National Academies Press: Washington, DC, USAspa
dcterms.bibliographicCitationde Paoli, M.A., Waldman, W.R. Bio-based additives for thermoplastics (2019) Polimeros, 29 (2), art. no. e2019030. Cited 18 times. http://www.scielo.br/pdf/po/v29n2/0104-1428-po-29-2-e2019030.pdf doi: 10.1590/0104-1428.06318spa
dcterms.bibliographicCitationPfaendner, R. Polymer Additives (Open Access) (2013) Handbook of Polymer Synthesis, Characterization, and Processing, pp. 225-247. http://onlinelibrary.wiley.com/book/10.1002/9781118480793 ISBN: 978-047063032-7 doi: 10.1002/9781118480793.ch11spa
dcterms.bibliographicCitationGómez-Contreras, P., Figueroa-Lopez, K.J., Hernández-Fernández, J., Rodríguez, M.C., Ortega-Toro, R. Effect of different essential oils on the properties of edible coatings based on yam (Dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation (2021) Applied Sciences (Switzerland), 11 (22), art. no. 11057. Cited 11 times. https://www.mdpi.com/2076-3417/11/22/11057/pdf doi: 10.3390/app112211057spa
dcterms.bibliographicCitationPavon, C., Aldas, M., López-Martínez, J., Hernández-Fernández, J., Patricia Arrieta, M. Films based on thermoplastic starch blended with pine resin derivatives for food packaging (2021) Foods, 10 (6), art. no. 1171. Cited 20 times. https://www.mdpi.com/2304-8158/10/6/1171/pdf doi: 10.3390/foods10061171spa
dcterms.bibliographicCitationShao, J., He, Y., Li, F., Zhang, H., Chen, A., Luo, S., Gu, J.-D. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843 (Open Access) (2016) Ecotoxicology, 25 (1), pp. 225-233. Cited 15 times. www.wkap.nl/journalhome.htm/0963-9292 doi: 10.1007/s10646-015-1582-xspa
dcterms.bibliographicCitationGetachew, P., Getachew, M., Joo, J., Choi, Y.S., Hwang, D.S., Hong, Y.-K. The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones) (2016) Toxicology and Environmental Health Sciences, 8 (5), pp. 341-348. Cited 24 times. www.springer.com/journal/13530 doi: 10.1007/s13530-016-0295-8spa
dcterms.bibliographicCitationMitchell, C.A., Davies, M.J., Grounds, M.D., Mcgeachie, J.K., Crawford, G.J., Hong, Y., Chirila, T.V. Enhancement of neovascularization in regenerating skeletal muscle by the sustained release of erucamide from a polymer matrix (1996) Journal of Biomaterials Applications, 10 (3), pp. 230-249. Cited 28 times. http://jba.sagepub.com/ doi: 10.1177/088532829601000304spa
dcterms.bibliographicCitationWakamatsu, K., Masaki, T., Itoh, F., Kondo, K., Sudo, K. Isolation of fatty acid amide as an angiogenic principle from bovine mesentery (1990) Biochemical and Biophysical Research Communications, 168 (2), pp. 423-429. Cited 76 times. doi: 10.1016/0006-291X(90)92338-Zspa
dcterms.bibliographicCitationHamberger, A., Stenhagen, G. (2003) Erucamide Compounds for the Treatment and Prevention to Disturbances of the Secretory System. Cited 2 times. WIPO (PCT) WO2003002112A1, 9 Januaryspa
dcterms.bibliographicCitationHenzel, R.P., Vanier, N.R. (1989) Slipping Layer Containing Functionalized Siloxane and Wax for Dye-Donor Element Used in Thermal Dye Transfer. Cited 2 times. U.S. Patent 4,866,026, 12 Septemberspa
dcterms.bibliographicCitationatarino-Centeno, R., Waldo-Mendoza, M.A., García-Hernández, E., Pérez-López, J.E. Relationship between the coefficient of friction of additive in the bulk and chain graft surface density through a diffusion process: Erucamide–stearyl erucamide mixtures in polypropylene films (2021) Journal of Vinyl and Additive Technology, 27 (2), pp. 459-466. Cited 4 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1548-0585 doi: 10.1002/vnl.21820spa
dcterms.bibliographicCitationKawamura, Y., Miura, M., Sugita, T., Yamada, T., Takeda, M. Simultaneous determination of antioxidants and ultraviolet stabilizers in polyethylene by HPLC (1996) Journal of the Food Hygienic Society of Japan, 37 (5), pp. 272-280. Cited 18 times. https://www.jstage.jst.go.jp/browse/shokueishi1960/-char/en doi: 10.3358/shokueishi.37.5_272spa
dcterms.bibliographicCitationKawamura, Y., Watanabe, K., Sayama, K., Takeda, Y., Yamada, T. Simultaneous determination of polymer additives in polyethylene by GC/MS (1997) Journal of the Food Hygienic Society of Japan, 38 (5), pp. 307-318. Cited 20 times. https://www.jstage.jst.go.jp/browse/shokueishi1960/-char/en doi: 10.3358/shokueishi.38.5_307spa
dcterms.bibliographicCitationKawamura, Y., Yonezawa, R., Maehara, T., Yamada, T. Determination of additives in food contact polypropylene (2000) Journal of the Food Hygienic Society of Japan, 41 (2), pp. 154-161. Cited 15 times. http://www.jstage.jst.go.jp/browse/ doi: 10.3358/shokueishi.41.154spa
dcterms.bibliographicCitationVandenburg, H.J., Clifford, A.A., Bartle, K.D., Carroll, J., Newton, I., Garden, L.M., Dean, J.R., (...), Costley, C.T. Analytical extraction of additives from polymers (Open Access) (1997) Analyst, 122 (9), pp. 101R-115R. Cited 141 times. www.rsc.org/analyst doi: 10.1039/a704052kspa
dcterms.bibliographicCitationRoosen, M., De Somer, T., Demets, R., Ügdüler, S., Meesseman, V., Van Gorp, B., Ragaert, K., (...), De Meester, S. Towards a better understanding of odor removal from post-consumer plastic film waste: A kinetic study on deodorization efficiencies with different washing media (Open Access) (2021) Waste Management, 120, pp. 564-575. Cited 15 times. www.elsevier.com/locate/wasman doi: 10.1016/j.wasman.2020.10.021spa
dcterms.bibliographicCitation(2022) Odor Removal—An Overview | Sciencedirect Topics accessed on 11 August https://www.sciencedirect.com/topics/engineering/odor-removalspa
dcterms.bibliographicCitationHernández-Fernández, J., Lopez-Martinez, J., Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene (Open Access) (2021) Chemosphere, 263, art. no. 128027. Cited 25 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2020.128027spa
dcterms.bibliographicCitationFernández, J.H., Guerra, Y., Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America (2022) Molecules, 27 (15), art. no. 4832. Cited 9 times. http://www.mdpi.com/journal/molecules doi: 10.3390/molecules27154832spa
dcterms.bibliographicCitationHernández-Fernández, J., Lopez-Martinez, J., Barceló, D. Development and validation of a methodology for quantifying parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry (Open Access) (2021) Journal of Chromatography A, 1637, art. no. 461833. Cited 12 times. www.elsevier.com/locate/chroma doi: 10.1016/j.chroma.2020.461833spa
dcterms.bibliographicCitationFernández, J.H., Cano, H., Guerra, Y., Polo, E.P., Ríos-Rojas, J.F., Vivas-Reyes, R., Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC) (2022) Sustainability (Switzerland), 14 (9), art. no. 4920. Cited 14 times. https://www.mdpi.com/2071-1050/14/9/4920/pdf doi: 10.3390/su14094920spa
dcterms.bibliographicCitationHernández-Fernández, J., Guerra, Y., Puello-Polo, E., Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene (Open Access) (2022) Polymers, 14 (15), art. no. 3123. Cited 14 times. http://www.mdpi.com/journal/polymers doi: 10.3390/polym14153123spa
dcterms.bibliographicCitationHernández-Fernández, J., López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis (Open Access) (2021) Journal of Analytical and Applied Pyrolysis, 155, art. no. 105052. Cited 17 times. https://www.journals.elsevier.com/journal-of-analytical-and-applied-pyrolysis doi: 10.1016/j.jaap.2021.105052spa
dcterms.bibliographicCitationHernández-Fernández, J., Rayón, E., López, J., Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants (2019) Macromolecular Materials and Engineering, 304 (11), art. no. 1900379. Cited 32 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1439-2054 doi: 10.1002/mame.201900379spa
dcterms.bibliographicCitation(2022) Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting accessed on 11 August https://www.astm.org/d1894-08.htmlspa
dcterms.bibliographicCitationJoshi, N.B., Hirt, D.E. Evaluating bulk-to-surface partitioning of erucamide in LLDPE films using FT-IR microspectroscopy (Open Access) (1999) Applied Spectroscopy, 53 (1), pp. 11-16. Cited 26 times. doi: 10.1366/0003702991945380spa
dcterms.bibliographicCitationHuang, Y., Xiong, Y., Liu, C., Li, L., Xu, D., Lin, Y.-H., Nan, C.-W. Single-crystalline 2D erucamide with low friction and enhanced thermal conductivity (Open Access) (2018) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 540, pp. 29-35. Cited 8 times. www.elsevier.com/locate/colsurfa doi: 10.1016/j.colsurfa.2017.12.060spa
dcterms.bibliographicCitationHar-Even, E., Brown, A., Meletis, E.I. Effect of friction on the microstructure of compacted solid additive blends for polymers (2015) Wear, 328-329, pp. 160-166. Cited 7 times. doi: 10.1016/j.wear.2015.01.075spa
dcterms.bibliographicCitationSoliman, M., Essers, F.E.J., Degenhart, P. (2009) Scratch-Resistant Moulded Article Made from a Filled Polypropylene Composition U.S. Patent US8163378B2, 19 Novemberspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/su15021247
dc.subject.keywordsCoefficient of frictionspa
dc.subject.keywordsErucamidespa
dc.subject.keywordsPolypropylenespa
dc.subject.keywordsRecoveryspa
dc.subject.keywordsWastewaterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.