Mostrar el registro sencillo del ítem

dc.contributor.authorDominguez, Juan
dc.contributor.authorCampillo, Javier
dc.contributor.authorCampo-Landines, Kiara
dc.contributor.authorContreras-Ortiz, Sonia H.
dc.date.accessioned2023-07-19T21:21:23Z
dc.date.available2023-07-19T21:21:23Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationDominguez, J., Campillo, J., Campo-Landines, K., & Contreras-Ortiz, S. H. (2023). Impact of emotional states on the effective range of electric vehicles. Journal of Ambient Intelligence and Humanized Computing, 14(7), 9049-9058.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12211
dc.description.abstractOver the last decade, a large interest in reducing transportation dependence on fossil fuels as well as the cost reduction in battery technologies, have driven the electric cars market uptake. However, information is scarce about factors that affect the driving range. Besides the battery’s capacity, other factors may affect the overall vehicle’s range, for instance: driving behavior, fluctuations in temperature, number of battery cycles, etc. Accordingly, this paper proposes an approach to evaluate the impact of emotions and driving behavior on the range of electric cars using physiological signals and vehicle performance features. This work was developed in three stages. During the first stage, the heart rate and galvanic skin response of 20 volunteers were recorded from biosensors. The vehicle’s data was obtained from a driving simulator. Afterward, the driving profile was used as an input source to simulate an object-oriented electric vehicle model to estimate the driving range. Finally, during the third stage, feature selection techniques and subject-dependent classifiers were evaluated using metrics such as the accuracy and the area under the curve. Support-vector machines with radial kernel and tree-bagged models provided the best global performance with the bio-signals and driving performance subsets to discriminate between calm and aggressive driving. Results showed that driving behavior could be evaluated from physiological and vehicle features. Furthermore, the subjects’ statements showed that users’ beliefs, thoughts, and prior social contexts influence the way they perceive driving behavior. Reductions in the range of up to 68% when driving aggressively compared to a calm manner were found. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceJournal of Ambient Intelligence and Humanized Computingspa
dc.titleImpact of emotional states on the effective range of electric vehiclesspa
dcterms.bibliographicCitationAlvarez, R., López, A., De La Torre, N. Evaluating the effect of a driver's behaviour on the range of a battery electric vehicle (2015) Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229 (10), pp. 1379-1391. Cited 22 times. https://journals.sagepub.com/home/PID doi: 10.1177/0954407014561483spa
dcterms.bibliographicCitationBraun, A., Rid, W. Energy consumption of an electric and an internal combustion passenger car. A comparative case study from real world data on the Erfurt circuit in Germany (2017) Transportation Research Procedia, 27, pp. 468-475. Cited 29 times. www.journals.elsevier.com/transportation-research-procedia doi: 10.1016/j.trpro.2017.12.044spa
dcterms.bibliographicCitationBingham, C., Walsh, C., Carroll, S. Impact of driving characteristics on electric vehicle energy consumption and range (2012) IET Intelligent Transport Systems, 6 (1), pp. 29-35. Cited 153 times. doi: 10.1049/iet-its.2010.0137spa
dcterms.bibliographicCitationCarter, R., Cruden, A., Hall, P.J. Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle (2012) IEEE Transactions on Vehicular Technology, 61 (4), art. no. 6156474, pp. 1526-1533. Cited 250 times. doi: 10.1109/TVT.2012.2188551spa
dcterms.bibliographicCitationChen, L.-L., Zhao, Y., Ye, P.-F., Zhang, J., Zou, J.-Z. Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers (2017) Expert Systems with Applications, 85, pp. 279-291. Cited 167 times. doi: 10.1016/j.eswa.2017.01.040spa
dcterms.bibliographicCitationCooper, C.L., Dewe, P. Stress: A Brief History (2008) Stress: A Brief History, pp. 1-144. Cited 30 times. http://onlinelibrary.wiley.com/book/10.1002/9780470774755 ISBN: 978-047077475-5; 1405107448; 978-140510744-0 doi: 10.1002/9780470774755spa
dcterms.bibliographicCitationDominguez-Jimenez, J.A., Campillo, J. Object-oriented mathematical modeling for estimating electric vehicle’s range using modelica (2018) Communications in Computer and Information Science, 885, pp. 444-458. Cited 4 times. http://www.springer.com/series/7899 ISBN: 978-331998997-6 doi: 10.1007/978-3-319-98998-3_34spa
dcterms.bibliographicCitationDominguez-Jimenez, J.A., Campo-Landines, K.C., Contreras-Ortiz, S.H. A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals (Open Access) (2019) Communications in Computer and Information Science, 1052, pp. 357-367. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_31spa
dcterms.bibliographicCitationDomínguez-Jiménez, J.A., Campo-Landines, K.C., Martínez-Santos, J.C., Delahoz, E.J., Contreras-Ortiz, S.H. A machine learning model for emotion recognition from physiological signals (2020) Biomedical Signal Processing and Control, 55, art. no. 101646. Cited 102 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2019.101646spa
dcterms.bibliographicCitationFelipe, J., Amarillo, J.C., Naranjo, J.E., Serradilla, F., Diaz, A. Energy Consumption Estimation in Electric Vehicles Considering Driving Style (2015) IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2015-October, art. no. 7313117, pp. 101-106. Cited 34 times. ISBN: 978-146736595-6; 978-146736595-6; 978-146736595-6; 978-146736595-6 doi: 10.1109/ITSC.2015.25spa
dcterms.bibliographicCitationFranke, T., Krems, J.F. Understanding charging behaviour of electric vehicle users (2013) Transportation Research Part F: Traffic Psychology and Behaviour, 21, pp. 75-89. Cited 201 times. http://www.elsevier.com/locate/issn/13698478 doi: 10.1016/j.trf.2013.09.002spa
dcterms.bibliographicCitationGrunditz, E.A., Thiringer, T. Electric Vehicle Acceleration Performance and Motor Drive Cycle Energy Efficiency Trade-Off (2018) Proceedings - 2018 23rd International Conference on Electrical Machines, ICEM 2018, art. no. 8507201, pp. 717-723. Cited 12 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8478646 ISBN: 978-153862477-7 doi: 10.1109/ICELMACH.2018.8507201spa
dcterms.bibliographicCitationGuzzella, L., Sciarretta, A. Vehicle propulsion systems: Introduction to modeling and optimization (2007) Vehicle Propulsion Systems (Second Edition): Introduction to Modeling and Optimization, pp. 1-338. Cited 490 times. http://www.springerlink.com/openurl.asp?genre=book&isbn=978-3-540-74691-1 ISBN: 978-354074691-1 doi: 10.1007/978-3-540-74692-8spa
dcterms.bibliographicCitationHabibifar, N., Salmanzadeh, H. Relationship between driving styles and biological behavior of drivers in negative emotional state (2022) Transportation Research Part F: Traffic Psychology and Behaviour, 85, pp. 245-258. Cited 8 times. http://www.elsevier.com/locate/issn/13698478 doi: 10.1016/j.trf.2022.01.010spa
dcterms.bibliographicCitationJahangir, H., Golkar, M.A., Ahmadian, A., Elkamel, A. Why electric vehicles? (2020) Electric Vehicles in Energy Systems: Modelling, Integration, Analysis, and Optimization, pp. 1-20. Cited 5 times. http://dx.doi.org/10.1007/978-3-030-34448-1 ISBN: 978-303034448-1; 978-303034447-4 doi: 10.1007/978-3-030-34448-1_1spa
dcterms.bibliographicCitationLanatà, A., Valenza, G., Greco, A., Gentili, C., Bartolozzi, R., Bucchi, F., Frendo, F., (...), Scilingo, E.P. How the Autonomic nervous system and driving style change with incremental stressing conditions during simulated driving (Open Access) (2015) IEEE Transactions on Intelligent Transportation Systems, 16 (3), art. no. 6964800, pp. 1505-1517. Cited 98 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979 doi: 10.1109/TITS.2014.2365681spa
dcterms.bibliographicCitationNykvist, B., Nilsson, M. Rapidly falling costs of battery packs for electric vehicles (2015) Nature Climate Change, 5 (4), pp. 329-332. Cited 1247 times. http://www.nature.com/nclimate/index.html doi: 10.1038/nclimate2564spa
dcterms.bibliographicCitationRodgers, M.M., Pai, V.M., Conroy, R.S. Recent advances in wearable sensors for health monitoring (Open Access) (2015) IEEE Sensors Journal, 15 (6), art. no. 6899605, pp. 3119-3126. Cited 226 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361 doi: 10.1109/JSEN.2014.2357257spa
dcterms.bibliographicCitationSagberg, F., Selpi, Bianchi Piccinini, G.F., Engström, J. A review of research on driving styles and road safety (2015) Human Factors, 57 (7), pp. 1248-1275. Cited 230 times. http://hfs.sagepub.com/ doi: 10.1177/0018720815591313spa
dcterms.bibliographicCitationVassileva, I., Campillo, J. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden (2017) Energy, 120, pp. 632-641. Cited 145 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2016.11.119spa
dcterms.bibliographicCitationWeldon, P., Morrissey, P., O'Mahony, M. Long-term cost of ownership comparative analysis between electric vehicles and internal combustion engine vehicles (Open Access) (2018) Sustainable Cities and Society, 39, pp. 578-591. Cited 81 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2018.02.024spa
dcterms.bibliographicCitationXiao, H., Li, W., Zeng, G., Wu, Y., Xue, J., Zhang, J., Li, C., (...), Guo, G. On-Road Driver Emotion Recognition Using Facial Expression (Open Access) (2022) Applied Sciences (Switzerland), 12 (2), art. no. 807. Cited 11 times. https://www.mdpi.com/2076-3417/12/2/807/pdf doi: 10.3390/app12020807spa
dcterms.bibliographicCitationYang, L., Ma, R., Zhang, H.M., Guan, W., Jiang, S. Driving behavior recognition using EEG data from a simulated car-following experiment (2018) Accident Analysis and Prevention, 116, pp. 30-40. Cited 100 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2017.11.010spa
dcterms.bibliographicCitationYounes, Z., Boudet, L., Suard, F., Gerard, M., Rioux, R. Analysis of the main factors influencing the energy consumption of electric vehicles (Open Access) (2013) Proceedings of the 2013 IEEE International Electric Machines and Drives Conference, IEMDC 2013, art. no. 6556260, pp. 247-253. Cited 38 times. ISBN: 978-146734975-8 doi: 10.1109/IEMDC.2013.6556260spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1007/s12652-022-04410-x
dc.subject.keywordsAutomobile;spa
dc.subject.keywordsAlternative Fuel Vehicles;spa
dc.subject.keywordsElectric Carspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.