Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorMarín-García, Edward-J.
dc.contributor.authorRamos-Paja, v
dc.contributor.authorPerea-Moreno, Alberto-Jesus
dc.date.accessioned2023-07-19T21:20:06Z
dc.date.available2023-07-19T21:20:06Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationGrisales-Noreña, L. F., Montoya, O. D., Marín-García, E. J., Ramos-Paja, C. A., & Perea-Moreno, A. J. (2022). Integration of PV Distributed Generators into Electrical Networks for Investment and Energy Purchase Costs Reduction by Using a Discrete–Continuous Parallel PSO. Energies, 15(20), 7465.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12202
dc.description.abstractThe problem of optimally integrating PV DGs into electrical networks to reduce annual costs (which include energy purchase and investment costs) was addressed in this research by presenting a new solution methodology. For such purpose, we used a Discrete–Continuous Parallel Particle Swarm Optimization method (DCPPSO), which considers both the discrete and continuous variables associated with the location and sizing of DGs in an electrical network and employs a parallel processing tool to reduce processing times. The optimization parameters of the proposed solution methodology were tuned using an external optimization algorithm. To validate the performance of DCPPSO, we employed the 33- and 69-bus test systems and compared it with five other solution methods: the BONMIN solver of the General Algebraic Modeling System (GAMS) and other four discrete–continuous methodologies that have been recently proposed. According to the findings, the DCPPSO produced the best results in terms of quality of the solution, processing time, and repeatability in electrical networks of any size, since it showed a better performance as the size of the electrical system increased. © 2022 by the authors.spa
dc.format.extent20 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceEnergiesspa
dc.titleIntegration of PV Distributed Generators into Electrical Networks for Investment and Energy Purchase Costs Reduction by Using a Discrete–Continuous Parallel PSOspa
dcterms.bibliographicCitationLópez González, D.M., Garcia Rendon, J. Opportunities and challenges of mainstreaming distributed energy resources towards the transition to more efficient and resilient energy markets (2022) Renewable and Sustainable Energy Reviews, 157, art. no. 112018. Cited 18 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2021.112018spa
dcterms.bibliographicCitationAl-Shahri, O.A., Ismail, F.B., Hannan, M.A., Lipu, M.S.H., Al-Shetwi, A.Q., Begum, R.A., Al-Muhsen, N.F.O., (...), Soujeri, E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review (2021) Journal of Cleaner Production, 284, art. no. 125465. Cited 133 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.125465spa
dcterms.bibliographicCitationCortés-Caicedo, B., Molina-Martin, F., Grisales-Noreña, L.F., Montoya, O.D., Hernández, J.C. Optimal Design of PV Systems in Electrical Distribution Networks by Minimizing the Annual Equivalent Operative Costs through the Discrete-Continuous Vortex Search Algorithm (2022) Sensors, 22 (3), art. no. 851. Cited 18 times. https://www.mdpi.com/1424-8220/22/3/851/pdf doi: 10.3390/s22030851spa
dcterms.bibliographicCitationKandemir, E., Cetin, N.S., Borekci, S. A comprehensive overview of maximum power extraction methods for PV systems (2017) Renewable and Sustainable Energy Reviews, 78, pp. 93-112. Cited 106 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.04.090spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., Ramos-Paja, C.A. Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach (Open Access) (2022) Computers, 11 (4), art. no. 53. Cited 6 times. https://www.mdpi.com/2073-431X/11/4/53/pdf doi: 10.3390/computers11040053spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018spa
dcterms.bibliographicCitationGong, X., Dong, F., Mohamed, M.A., Awwad, E.M., Abdullah, H.M., Ali, Z.M. Towards distributed based energy transaction in a clean smart island (2020) Journal of Cleaner Production, 273, art. no. 122768. Cited 54 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.122768spa
dcterms.bibliographicCitationChen, J., Alnowibet, K., Annuk, A., Mohamed, M.A. An effective distributed approach based machine learning for energy negotiation in networked microgrids (Open Access) (2021) Energy Strategy Reviews, 38, art. no. 100760. Cited 22 times. http://www.journals.elsevier.com/energy-strategy-reviews/ doi: 10.1016/j.esr.2021.100760spa
dcterms.bibliographicCitationJunedi, M.M., Ludin, N.A., Hamid, N.H., Kathleen, P.R., Hasila, J., Ahmad Affandi, N.A. Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems (2022) Renewable and Sustainable Energy Reviews, 168, art. no. 112799. Cited 5 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2022.112799spa
dcterms.bibliographicCitationMoradi, M.H., Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) International Journal of Electrical Power and Energy Systems, 34 (1), pp. 66-74. Cited 865 times. doi: 10.1016/j.ijepes.2011.08.023spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach (Open Access) (2020) Ain Shams Engineering Journal, 11 (2), pp. 409-418. Cited 51 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.08.011spa
dcterms.bibliographicCitationKollu, R., Rayapudi, S.R., Sadhu, V.L.N. A novel method for optimal placement of distributed generation in distribution systems using HSDO (Open Access) (2014) International Transactions on Electrical Energy Systems, 24 (4), pp. 547-561. Cited 57 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-7038;jsessionid=37A99007CF662738769613522C4B81FF.d04t01 doi: 10.1002/etep.1710spa
dcterms.bibliographicCitationInjeti, S.K., Prema Kumar, N. A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems (2013) International Journal of Electrical Power and Energy Systems, 45 (1), pp. 142-151. Cited 262 times. doi: 10.1016/j.ijepes.2012.08.043spa
dcterms.bibliographicCitationRamadan, A., Ebeed, M., Kamel, S., Agwa, A.M., Tostado‐véliz, M. The Probabilistic Optimal Integration of Renewable Distributed Generators Considering the Time‐Varying Load Based on an Artificial Gorilla Troops Optimizer (Open Access) (2022) Energies, 15 (4), art. no. 1302. Cited 12 times. https://www.mdpi.com/1996-1073/15/4/1302/pdf doi: 10.3390/en15041302spa
dcterms.bibliographicCitationNagadurga, T., Narasimham, P.V.R.L., Vakula, V.S., Devarapalli, R. Gray wolf optimization-based optimal grid connected solar photovoltaic system with enhanced power quality features (2022) Concurrency and Computation: Practice and Experience, 34 (5), art. no. e6696. Cited 5 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1532-0634 doi: 10.1002/cpe.6696spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., Perea-Moreno, A.-J. Optimal investments in PV sources for grid-connected distribution networks: An application of the discrete–continuous genetic algorithm (2021) Sustainability (Switzerland), 13 (24), art. no. 13633. Cited 16 times. https://www.mdpi.com/2071-1050/13/24/13633/pdf doi: 10.3390/su132413633spa
dcterms.bibliographicCitationMontoya, O.D., Giral-Ramírez, D.A., Hernández, J.C. Efficient Integration of PV Sources in Distribution Networks to Reduce Annual Investment and Operating Costs Using the Modified Arithmetic Optimization Algorithm (Open Access) (2022) Electronics (Switzerland), 11 (11), art. no. 1680. Cited 4 times. https://www.mdpi.com/2079-9292/11/11/1680/pdf?version=1653469820 doi: 10.3390/electronics11111680spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., Alvarado-Barrios, L., Arias-Londoño, A., Álvarez-Arroyo, C. Efficient reduction in the annual investment costs in ac distribution networks via optimal integration of solar pv sources using the newton metaheuristic algorithm (Open Access) (2021) Applied Sciences (Switzerland), 11 (23), art. no. 11525. Cited 12 times. https://www.mdpi.com/2076-3417/11/23/11525/pdf doi: 10.3390/app112311525spa
dcterms.bibliographicCitationAbualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H. The Arithmetic Optimization Algorithm (Open Access) (2021) Computer Methods in Applied Mechanics and Engineering, 376, art. no. 113609. Cited 1114 times. http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/ doi: 10.1016/j.cma.2020.113609spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (Open Access) (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488spa
dcterms.bibliographicCitationMuñoz, A.A.R., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks (Open Access) (2022) Electronics (Switzerland), 11 (8), art. no. 1287. Cited 3 times. https://www.mdpi.com/2079-9292/11/8/1287/pdf doi: 10.3390/electronics11081287spa
dcterms.bibliographicCitationKim, J.-Y., Mun, K.-J., Kim, H.-S., Park, J.H. Optimal power system operation using parallel processing system and PSO algorithm (Open Access) (2011) International Journal of Electrical Power and Energy Systems, 33 (8), pp. 1457-1461. Cited 37 times. doi: 10.1016/j.ijepes.2011.06.026spa
dcterms.bibliographicCitationPereira da Silva, P., Dantas, G., Pereira, G.I., Câmara, L., De Castro, N.J. Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation (2019) Renewable and Sustainable Energy Reviews, 103, pp. 30-39. Cited 38 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2018.12.028spa
dcterms.bibliographicCitationZhang, F., Deng, H., Margolis, R., Su, J. Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China (Open Access) (2015) Energy Policy, 81, pp. 43-55. Cited 92 times. http://www.journals.elsevier.com/energy-policy/ doi: 10.1016/j.enpol.2015.02.010spa
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (Open Access) (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, O.D., Hincapié-Isaza, R.A., Granada Echeverri, M., Perea-Moreno, A.-J. Optimal location and sizing of dgs in dc networks using a hybrid methodology based on the ppbil algorithm and the vsa (Open Access) (2021) Mathematics, 9 (16), art. no. 1913. Cited 9 times. https://www.mdpi.com/2227-7390/9/16/1913/pdf doi: 10.3390/math9161913spa
dcterms.bibliographicCitationMuñoz, A.A.R., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Giral-Ramírez, D.A. Optimal power dispatch of distributed generators in direct current networks using a master–slave methodology that combines the salp swarm algorithm and the successive approximation method (2021) Electronics (Switzerland), 10 (22), art. no. 2837. Cited 6 times. https://www.mdpi.com/2079-9292/10/22/2837/pdf doi: 10.3390/electronics10222837spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/en15207465
dc.subject.keywordsPlacement;spa
dc.subject.keywordsActive Distribution Network;spa
dc.subject.keywordsVoltage Stabilityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.