Mostrar el registro sencillo del ítem
Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry
dc.contributor.author | Coba-Jiménez, Ludis | |
dc.contributor.author | Guerra, Mayamarú | |
dc.contributor.author | Maza, Julio | |
dc.contributor.author | Deluque-Gómez, Julio | |
dc.contributor.author | Cubillán, Néstor | |
dc.date.accessioned | 2023-07-19T21:19:59Z | |
dc.date.available | 2023-07-19T21:19:59Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Coba‐Jiménez, L., Maza, J., Guerra, M., Deluque‐Gómez, J., & Cubillán, N. (2022). Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry. ChemistrySelect, 7(2), e202103836. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12201 | |
dc.description.abstract | A theoretical study of the ciprofloxacin interactions with glucuronic acid, arabinose, glucosamine, and rhamnose is presented. The most stable complexes were obtained through genetic algorithms starting from the neutral and zwitterion species of ciprofloxacin. The energy at the semiempirical level PM7 of the optimal structures of the complexes was the genetic algorithm‘s fitness function. The resulting complexes’ geometry was optimized at M062X−D3/6-311++G** level of theory, and non-covalent interactions were assessed through the reduced density gradient and quantum theory of atoms in molecules. The results show that the zwitterion species of ciprofloxacin favorably complex carbohydrates and can induce proton exchange between them. The molecular complexes from proton exchange are the most stable, followed by the complexes formed by the contact of the zwitterion species and the carbohydrate. The complexes formed by both neutral species were the least stable. The medium strength and strong (assisted by charge) hydrogen bonds, the XH⋅⋅⋅π and lone-pair⋅⋅π interactions, were mainly present in the complexes. Proton exchange processes strengthen the interactions mentioned above. © 2022 Wiley-VCH GmbH | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | ChemistrySelect | spa |
dc.title | Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry | spa |
dc.title.alternative | Maza, | spa |
dcterms.bibliographicCitation | Unemo, M., Golparian, D., Eyre, D.W. Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea (2019) Methods in Molecular Biology, 1997, pp. 37-58. Cited 50 times. http://www.springer.com/series/7651 doi: 10.1007/978-1-4939-9496-0_3 | spa |
dcterms.bibliographicCitation | Bergan, T., Dalhoff, A., Rohwedder, R. Pharmacokinetics of ciprofloxacin (1988) Infection, 16 (1 Supplement), pp. S3-S13. Cited 71 times. doi: 10.1007/BF01650500 | spa |
dcterms.bibliographicCitation | Sarafraz, M., Ali, S., Sadani, M., Heidarinejad, Z., Bay, A., Fakhri, Y., Mousavi Khaneghah, A. A global systematic, review-meta analysis and ecological risk assessment of ciprofloxacin in river water (2020) International Journal of Environmental Analytical Chemistry, pp. 1-15. Cited 9 times. www.tandf.co.uk/journals/titles/03067319.asp doi: 10.1080/03067319.2020.1791330 | spa |
dcterms.bibliographicCitation | Ajibola, A.S., Amoniyan, O.A., Ekoja, F.O., Ajibola, F.O. QuEChERS Approach for the Analysis of Three Fluoroquinolone Antibiotics in Wastewater: Concentration Profiles and Ecological Risk in Two Nigerian Hospital Wastewater Treatment Plants (2021) Archives of Environmental Contamination and Toxicology, 80 (2), pp. 389-401. Cited 14 times. link.springer.de/link/service/journals/00244/index.htm doi: 10.1007/s00244-020-00789-w | spa |
dcterms.bibliographicCitation | Wang, K., Gao, D., Xu, J., Cai, L., Cheng, J., Yu, Z., Hu, Z., (...), Yu, J. Interaction of ciprofloxacin with the activated sludge of the sewage treatment plant (Open Access) (2018) Environmental Science and Pollution Research, 25 (35), pp. 35064-35073. Cited 8 times. http://www.springerlink.com/content/0944-1344 doi: 10.1007/s11356-018-3413-0 | spa |
dcterms.bibliographicCitation | Xie, P., Chen, C., Zhang, C., Su, G., Ren, N., Ho, S.-H. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae (2020) Water Research, 172, art. no. 115475. Cited 124 times. www.elsevier.com/locate/watres doi: 10.1016/j.watres.2020.115475 | spa |
dcterms.bibliographicCitation | Yu, J.-H., Lee, B., Jeong, D., Jung, S. Solubility and bioavailability enhancement of ciprofloxacin by induced oval-shaped mono-6-deoxy-6-aminoethylamino-β-cyclodextrin (2017) Carbohydrate Polymers, 163, pp. 118-128. Cited 30 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/405871/description#description doi: 10.1016/j.carbpol.2017.01.073 | spa |
dcterms.bibliographicCitation | Arafa, M.G., Mousa, H.A., Afifi, N.N. Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection (Open Access) (2020) Drug Delivery, 27 (1), pp. 26-39. Cited 76 times. https://www.tandfonline.com/loi/idrd20 doi: 10.1080/10717544.2019.1701140 | spa |
dcterms.bibliographicCitation | Li, T., Guo, R., Zong, Q., Ling, G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin (2022) Carbohydrate Polymers, 276, art. no. 118644. Cited 28 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/405871/description#description doi: 10.1016/j.carbpol.2021.118644 | spa |
dcterms.bibliographicCitation | Aytac, Z., Ipek, S., Erol, I., Durgun, E., Uyar, T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex (2019) Colloids and Surfaces B: Biointerfaces, 178, pp. 129-136. Cited 67 times. www.elsevier.com/locate/colsurfb doi: 10.1016/j.colsurfb.2019.02.059 | spa |
dcterms.bibliographicCitation | Laplaza, R., Peccati, F., A. Boto, R., Quan, C., Carbone, A., Piquemal, J.-P., Maday, Y., (...), Contreras-García, J. NCIPLOT and the analysis of noncovalent interactions using the reduced density gradient (Open Access) (2021) Wiley Interdisciplinary Reviews: Computational Molecular Science, 11 (2), art. no. e1497. Cited 40 times. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1759-0884 | spa |
dcterms.bibliographicCitation | Noresson, A.-L., Aurelius, O., Öberg, C.T., Engström, O., Sundin, A.P., Håkansson, M., Stenström, O., (...), Nilsson, U.J. Designing interactions by control of protein-ligand complex conformation: Tuning arginine-arene interaction geometry for enhanced electrostatic protein-ligand interactions (2018) Chemical Science, 9 (4), pp. 1014-1021. Cited 14 times. http://pubs.rsc.org/en/journals/journal/sc doi: 10.1039/c7sc04749e | spa |
dcterms.bibliographicCitation | Onuchic, J.N., Wolynes, P.G. Theory of protein folding (2004) Current Opinion in Structural Biology, 14 (1), pp. 70-75. Cited 1006 times. http://www.elsevier.com/locate/sbi doi: 10.1016/j.sbi.2004.01.009 | spa |
dcterms.bibliographicCitation | Veclani, D., Melchior, A. Adsorption of ciprofloxacin on carbon nanotubes: Insights from molecular dynamics simulations (2020) Journal of Molecular Liquids, 298, art. no. 111977. Cited 41 times. https://www.journals.elsevier.com/journal-of-molecular-liquids doi: 10.1016/j.molliq.2019.111977 | spa |
dcterms.bibliographicCitation | Cheng, D., Feng, Y., Liu, Y., Li, J., Xue, J., Li, Z. Quantitative models for predicting adsorption of oxytetracycline, ciprofloxacin and sulfamerazine to swine manures with contrasting properties (2018) Science of the Total Environment, 634, pp. 1148-1156. Cited 30 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2018.04.114 | spa |
dcterms.bibliographicCitation | Jenkins, S., Maza, J.R., Xu, T., Jiajun, D., Kirk, S.R. Biphenyl: A stress tensor and vector-based perspective explored within the quantum theory of atoms in molecules (2015) International Journal of Quantum Chemistry, 115 (23), pp. 1678-1690. Cited 40 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-461X doi: 10.1002/qua.25006 | spa |
dcterms.bibliographicCitation | Silvi, B., Ratajczak, H. Hydrogen bonding and delocalization in the ELF analysis approach (2016) Physical Chemistry Chemical Physics, 18 (39), pp. 27442-27449. Cited 22 times. http://www.rsc.org/Publishing/Journals/CP/index.asp doi: 10.1039/c6cp05400e | spa |
dcterms.bibliographicCitation | Matta, C.F., Castillo, N., Boyd, R.J. Extended weak bonding interactions in DNA: π-stacking (base-base), base-backbone, and backbone-backbone interactions (2006) Journal of Physical Chemistry B, 110 (1), pp. 563-578. Cited 218 times. http://pubs.acs.org/journal/jpcbfk doi: 10.1021/jp054986g | spa |
dcterms.bibliographicCitation | Dey, D., Chopra, D. Occurrence of 3D isostructurality in fluorinated phenyl benzamidines (2017) CrystEngComm, 19 (1), pp. 47-63. Cited 14 times. http://www.rsc.org/publishing/journals/CE/article.asp?type=CurrentIssue doi: 10.1039/C6CE01924B | spa |
dcterms.bibliographicCitation | Morales-Toyo, M., Kansız, S., Dege, N., Glidewell, C., Fuenmayor-Zafra, A., Cubillán, N. Polymorphs of 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid (Diclofenac): Differences from crystallography, Hirshfeld surface, QTAIM and NCIPlots (2021) Chemical Physics, 544, art. no. 111119. Cited 4 times. http://www.journals.elsevier.com/chemical-physics/ doi: 10.1016/j.chemphys.2021.111119 | spa |
dcterms.bibliographicCitation | Alonso, M., Woller, T., Martín-Martínez, F.J., Contreras-García, J., Geerlings, P., De Proft, F. Understanding the fundamental role of dispersion interactions in shaping carbon-based materials (Open Access) (2014) Chemistry - A European Journal, 20 (17), pp. 4931-4941. Cited 101 times. www.interscience.wiley.com doi: 10.1002/chem.201400107 | spa |
dcterms.bibliographicCitation | Kozmon, S., Matuška, R., Spiwok, V., Koča, J. Dispersion interactions of carbohydrates with condensate aromatic moieties: Theoretical study on the CH-π interaction additive properties (Open Access) (2011) Physical Chemistry Chemical Physics, 13 (31), pp. 14215-14222. Cited 30 times. doi: 10.1039/c1cp21071h | spa |
dcterms.bibliographicCitation | Jiménez-Moreno, E., Jiménez-Osés, G., Gómez, A.M., Santana, A.G., Corzana, F., Bastida, A., Jiménez-Barbero, J., (...), Asensio, J.L. A thorough experimental study of CH/π interactions in water: quantitative structure-stability relationships for carbohydrate/aromatic complexes (2015) Chemical Science, 6 (11), pp. 6076-6085. Cited 44 times. http://pubs.rsc.org/en/Journals/JournalIssues/SC doi: 10.1039/c5sc02108a | spa |
dcterms.bibliographicCitation | Novotný, J., Bazzi, S., Marek, R., Kozelka, J. Lone-pair-π interactions: Analysis of the physical origin and biological implications (2016) Physical Chemistry Chemical Physics, 18 (28), pp. 19472-19481. Cited 57 times. http://www.rsc.org/Publishing/Journals/CP/index.asp doi: 10.1039/c6cp01524g | spa |
dcterms.bibliographicCitation | Rodrigues-Oliveira, A.F., Batista, P.R., Ducati, L.C., Correra, T.C. Analyzing the N–H+…π interactions of protonated tryptophan and phenylalkylamines using QTAIM, NCI, and NBO (Open Access) (2020) Theoretical Chemistry Accounts, 139 (8), art. no. 130. Cited 6 times. http://link.springer-ny.com/link/service/journals/00214/index.htm doi: 10.1007/s00214-020-02643-7 | spa |
dcterms.bibliographicCitation | Contreras-García, J., Yang, W., Johnson, E.R. Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions (Open Access) (2011) Journal of Physical Chemistry A, 115 (45), pp. 12983-12990. Cited 308 times. doi: 10.1021/jp204278k | spa |
dcterms.bibliographicCitation | Rozas, I., Alkorta, I., Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors (Open Access) (2000) Journal of the American Chemical Society, 122 (45), pp. 11154-11161. Cited 1240 times. doi: 10.1021/ja0017864 | spa |
dcterms.bibliographicCitation | Pakiari, A.H., Eskandari, K. The chemical nature of very strong hydrogen bonds in some categories of compounds (2006) Journal of Molecular Structure: THEOCHEM, 759 (1-3), pp. 51-60. Cited 118 times. doi: 10.1016/j.theochem.2005.10.040 | spa |
dcterms.bibliographicCitation | Cramariuc, O., Rog, T., Javanainen, M., Monticelli, L., Polishchuk, A.V., Vattulainen, I. Mechanism for translocation of fluoroquinolones across lipid membranes (2012) Biochimica et Biophysica Acta - Biomembranes, 1818 (11), pp. 2563-2571. Cited 71 times. doi: 10.1016/j.bbamem.2012.05.027 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1002/slct.202103836 | |
dc.subject.keywords | Molecular Dynamics; | spa |
dc.subject.keywords | Carbohydrate Conformation; | spa |
dc.subject.keywords | Cellobiose | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.