Mostrar el registro sencillo del ítem

dc.contributor.authorRubiano-Labrador, Carolina
dc.contributor.authorAcevedo-Barrios, Rosa
dc.contributor.authorGarcía Lazaro, Alba
dc.contributor.authorWard Bowie, Lilia
dc.contributor.authorTámara Acosta, Ana Karina
dc.contributor.authorMercado Molina, Blanca
dc.date.accessioned2023-07-19T21:19:51Z
dc.date.available2023-07-19T21:19:51Z
dc.date.issued2022-07
dc.date.submitted2023-07
dc.identifier.citationRubiano-Labrador, C., Acevedo-Barrios, R., Lazaro, A.G., Bowie, L.W., Támara Acosta, A.K., Molina, B.M. Pseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymes (2022) Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 2022-July, . DOI: 10.18687/LACCEI2022.1.1.713spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12200
dc.description.abstractPseudomonas spp. is considered one of the most successful bacterial genera due to its plasticity and metabolic versatility, which has allowed it to colonize different ecosystems, including Antarctica. The ability of Pseudomonas to adapt an d survive in the hostile conditions of the Antarctic makes them a reservoir of enzymes that can be used in different biotechnological applications; however, research on this genus in Antarctica is still in its infancy. Therefore, the aim of this study was to isolate and characterise cold-adapted Pseudomonas from Livingston Island, Antarctica, and expl ore th eir abi l ity to produce cold-active hydrolytic enzymes. In the present study, we isolated seven cold-adapted bacteria related to the genus Pseudomonas. The isolated strains have the ability to produce hydrolytic enzymes. These results demonstrate that cold-adapted Pseudomonas from Antarctica are a promising source of cold-active enzymes with biotechnological potential.spa
dc.format.extent6 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyspa
dc.titlePseudomonas strains from the Livingston Island, Antarctica: a source of cold-active hydrolytic enzymesspa
dcterms.bibliographicCitationLalucat, J., Mulet, M., Gomila, M., García-Valdés, E. Genomics in bacterial taxonomy: Impact on the genus pseudomonas (2020) Genes, 11 (2), art. no. 139. Cited 106 times. https://www.mdpi.com/2073-4425/11/2/139/pdf doi: 10.3390/genes11020139spa
dcterms.bibliographicCitationJun, S.-R., Wassenaar, T.M., Nookaew, I., Hauser, L., Wanchai, V., Land, M., Timm, C.M., (...), Ussery, D.W. Diversity of Pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis (Open Access) (2016) Applied and Environmental Microbiology, 82 (1), pp. 375-383. Cited 55 times. http://aem.asm.org/content/82/1/375.full.pdf doi: 10.1128/AEM.02612-15spa
dcterms.bibliographicCitationSilby, M.W., Winstanley, C., Godfrey, S.A., Levy, S.B., Jackson, R.W. Pseudomonas genomes: Diverse and adaptable (Open Access) (2011) FEMS Microbiology Reviews, 35 (4), pp. 652-680. Cited 593 times. doi: 10.1111/j.1574-6976.2011.00269.xspa
dcterms.bibliographicCitationVazquez, S.C., Coria, S.H., Mac Cormack, W.P. Extracellular proteases from eight psychrotolerant antarctic strains (2004) Microbiological Research, 159 (2), pp. 157-166. Cited 44 times. www.urbanfischer.de/journals/microbiolres/microbio.htm doi: 10.1016/j.micres.2004.03.001spa
dcterms.bibliographicCitationLambrechts, S., Willems, A., Tahon, G. Uncovering the uncultivated majority in antarctic soils: Toward a synergistic approach (2019) Frontiers in Microbiology, 10 (FEB), art. no. 242. Cited 32 times. https://www.frontiersin.org/journals/microbiology# doi: 10.3389/fmicb.2019.00242spa
dcterms.bibliographicCitationBruno, S., Coppola, D., Di Prisco, G., Giordano, D., Verde, C. Enzymes from marine polar regions and their biotechnological applications (Open Access) (2019) Marine Drugs, 17 (10), art. no. 544. Cited 60 times. https://www.mdpi.com/1660-3397/17/10/544/pdf doi: 10.3390/md17100544spa
dcterms.bibliographicCitationLamilla, C., Pavez, M., Santos, A., Hermosilla, A., Llanquinao, V., Barrientos, L. Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica (Open Access) (2017) Polar Biology, 40 (3), pp. 719-726. Cited 34 times. link.springer.de/link/service/journals/00300/index.htm doi: 10.1007/s00300-016-1977-zspa
dcterms.bibliographicCitationMaiangwa, J., Ali, M.S.M., Salleh, A.B., Rahman, R.N.Z.R.A., Shariff, F.M., Leow, T.C. Adaptational properties and applications of cold-active lipases from psychrophilic bacteria (2015) Extremophiles, 19 (2), pp. 235-247. Cited 59 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-014-0710-5spa
dcterms.bibliographicCitationVester, J.K., Glaring, M.A., Stougaard, P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments (Open Access) (2015) Extremophiles, 19 (1), pp. 17-29. Cited 59 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-014-0704-3spa
dcterms.bibliographicCitationThapa, S., Li, H., OHair, J., Bhatti, S., Chen, F.-C., Nasr, K.A., Johnson, T., (...), Zhou, S. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives (Open Access) (2019) Molecular Biotechnology, 61 (8), pp. 579-601. Cited 55 times. http://www.springer.com/humana+press/journal/12033 doi: 10.1007/s12033-019-00187-1spa
dcterms.bibliographicCitationVenkatachalam, S., Gowdaman, V., Prabagaran, S.R. Culturable and Culture-Independent Bacterial Diversity and the Prevalence of Cold-Adapted Enzymes from the Himalayan Mountain Ranges of India and Nepal (Open Access) (2015) Microbial Ecology, 69 (3), pp. 472-491. Cited 31 times. link.springer.de/link/service/journals/00248/index.htm doi: 10.1007/s00248-014-0476-4spa
dcterms.bibliographicCitationRubiano-Labrador, C., Díaz-Cárdenas, C., López, G., Gómez, J., Baena, S. Colombian Andean thermal springs: reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes (2019) Extremophiles, 23 (6), pp. 793-808. Cited 4 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-019-01132-5spa
dcterms.bibliographicCitationSelbmann, L., Zucconi, L., Ruisi, S., Grube, M., Cardinale, M., Onofri, S. Culturable bacteria associated with Antarctic lichens: Affiliation and psychrotolerance (2010) Polar Biology, 33 (1), pp. 71-83. Cited 75 times. doi: 10.1007/s00300-009-0686-2spa
dcterms.bibliographicCitationMenasria, T., Aguilera, M., Hocine, H., Benammar, L., Ayachi, A., Si Bachir, A., Dekak, A., (...), Monteoliva-Sánchez, M. Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes (2018) Microbiological Research, 207, pp. 289-298. Cited 47 times. www.urbanfischer.de/journals/microbiolres/microbio.htm doi: 10.1016/j.micres.2017.12.011spa
dcterms.bibliographicCitationYu, Y., Li, H.-R., Zeng, Y.-X., Chen, B. Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica (2011) Marine Drugs, 9 (2), pp. 184-195. Cited 28 times. http://www.mdpi.com/1660-3397/9/2/184/pdf doi: 10.3390/md9020184spa
dcterms.bibliographicCitationDanilovich, M.E., Sánchez, L.A., Acosta, F., Delgado, O.D. Antarctic bioprospecting: in pursuit of microorganisms producing new antimicrobials and enzymes (2018) Polar Biology, 41 (7), pp. 1417-1433. Cited 19 times. link.springer.de/link/service/journals/00300/index.htm doi: 10.1007/s00300-018-2295-4spa
dcterms.bibliographicCitationGarcía-Echauri, S.A., Gidekel, M., Gutiérrez-Moraga, A., Santos, L., de León-Rodríguez, A. Isolation and phylogenetic classification of culturable psychrophilic prokaryotes from the Collins glacier in the Antarctica (2011) Folia Microbiologica, 56 (3), pp. 209-214. Cited 22 times. doi: 10.1007/s12223-011-0038-9spa
dcterms.bibliographicCitationropeano, M. T Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production (2012) Polar Res, 31 (1), p. 18507. Cited 19 times.spa
dcterms.bibliographicCitationGroudieva, T., Kambourova, M., Yusef, H., Royter, M., Grote, R., Trinks, H., Antranikian, G. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen (Open Access) (2004) Extremophiles, 8 (6), pp. 475-488. Cited 115 times. doi: 10.1007/s00792-004-0409-0spa
dcterms.bibliographicCitationOrellana-Saez, M., Pacheco, N., Costa, J.I., Mendez, K.N., Miossec, M.J., Meneses, C., Castro-Nallar, E., (...), Poblete-Castro, I. In-depth genomic and phenotypic characterization of the antarctic psychrotolerant strain pseudomonas sp. MPC6 reveals unique metabolic features, plasticity, and biotechnological potential (2019) Frontiers in Microbiology, 10, art. no. 1154. Cited 36 times. https://www.frontiersin.org/journals/microbiology# doi: 10.3389/fmicb.2019.01154spa
dcterms.bibliographicCitationSilva, T.R., Duarte, A.W.F., Passarini, M.R.Z., Ruiz, A.L.T.G., Franco, C.H., Moraes, C.B., de Melo, I.S., (...), Oliveira, V.M. Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities (Open Access) (2018) Polar Biology, 41 (7), pp. 1505-1519. Cited 23 times. link.springer.de/link/service/journals/00300/index.htm doi: 10.1007/s00300-018-2300-yspa
dcterms.bibliographicCitationVásquez-Ponce, F., Higuera-Llantén, S., Pavlov, M.S., Marshall, S.H., Olivares-Pacheco, J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica (Open Access) (2018) Brazilian Journal of Microbiology, 49 (4), pp. 695-702. Cited 21 times. http://www.scielo.br doi: 10.1016/j.bjm.2018.02.005spa
dcterms.bibliographicCitationRomaniuk, K., Styczynski, M., Decewicz, P., Buraczewska, O., Uhrynowski, W., Fondi, M., Wolosiewicz, M., (...), Dziewit, L. Diversity and horizontal transfer of antarctic pseudomonas spp. plasmids (2019) Genes, 10 (11), art. no. 850. Cited 5 times. https://www.mdpi.com/2073-4425/10/11/850/pdf doi: 10.3390/genes10110850spa
dcterms.bibliographicCitationPapale, M., Rizzo, C., Villescusa, J.A., Rochera, C., Camacho, A., Michaud, L., Lo Giudice, A. Prokaryotic assemblages in the maritime Antarctic Lake Limnopolar (Byers Peninsula, South Shetland Islands) (2017) Extremophiles, 21 (6), pp. 947-961. Cited 9 times. http://www.springerlink.com/app/home/journal.asp?wasp=a11a8a269a0040c1816cfffb60384506&referrer=parent&backto=linkingpublicationresults,1:100494,1 doi: 10.1007/s00792-017-0955-xspa
dcterms.bibliographicCitationGugliandolo, C., Michaud, L., Lo Giudice, A., Lentini, V., Rochera, C., Camacho, A., Maugeri, T.L. Prokaryotic Community in Lacustrine Sediments of Byers Peninsula (Livingston Island, Maritime Antarctica) (2016) Microbial Ecology, 71 (2), pp. 387-400. Cited 21 times. link.springer.de/link/service/journals/00248/index.htm doi: 10.1007/s00248-015-0666-8spa
dcterms.bibliographicCitationDickinson, I., Goodall-Copestake, W., Thorne, M.A.S., Schlitt, T., Ávila-Jiménez, M.L., Pearce, D.A. Extremophiles in an antarctic marine ecosystem (2016) Microorganisms, 4 (1), art. no. 8. Cited 16 times. https://www.mdpi.com/2076-2607/4/1/8/pdf doi: 10.3390/microorganisms4010008spa
dcterms.bibliographicCitationCiesielski, S., Górniak, D., Możejko, J., Świątecki, A., Grzesiak, J., Zdanowski, M. The Diversity of Bacteria Isolated from Antarctic Freshwater Reservoirs Possessing the Ability to Produce Polyhydroxyalkanoates (Open Access) (2014) Current Microbiology, 69 (5), pp. 594-603. Cited 27 times. link.springer.de/link/service/journals/00284/index.htm doi: 10.1007/s00284-014-0629-1spa
dcterms.bibliographicCitationZhang, J.W., Zeng, R.Y. Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic: Diversity and characterization of amylases (Open Access) (2007) World Journal of Microbiology and Biotechnology, 23 (11), pp. 1551-1557. Cited 22 times. doi: 10.1007/s11274-007-9400-0spa
dcterms.bibliographicCitationKoo, H., Basu, M.K., Crowley, M., Aislabie, J., Bej, A.K. Draft genome sequence of Pseudomonas sp. strain Ant30-3, a psychrotolerant bacterium with biodegradative attribute isolated from Antarctica (2014) Genome Announcements, 2 (3), art. no. e00522-14. Cited 2 times. http://genomea.asm.org/content/2/3/e00522-14.full.pdf doi: 10.1128/genomeA.00522-14spa
dcterms.bibliographicCitationPacheco, N., Orellana-Saez, M., Pepczynska, M., Enrione, J., Bassas-Galia, M., Borrero-de Acuña, J.M., Zacconi, F.C., (...), Poblete-Castro, I. Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers (2019) Journal of Industrial Microbiology and Biotechnology, 46 (8), pp. 1139-1153. Cited 18 times. www.springerlink.com/app/home/journal.asp doi: 10.1007/s10295-019-02186-2spa
dcterms.bibliographicCitationTapia-Vázquez, I., Sánchez-Cruz, R., Arroyo-Domínguez, M., Lira-Ruan, V., Sánchez-Reyes, A., del Rayo Sánchez-Carbente, M., Padilla-Chacón, D., (...), Folch-Mallol, J.L. Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico (Open Access) (2020) Microbiological Research, 232, art. no. 126394. Cited 41 times. www.urbanfischer.de/journals/microbiolres/microbio.htm doi: 10.1016/j.micres.2019.126394spa
dcterms.bibliographicCitationReddy, G.S.N., Matsumoto, G.I., Schumann, P., Stackerbrandt, E., Shivaji, S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antartica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov (2004) International Journal of Systematic and Evolutionary Microbiology, 54 (3), pp. 713-719. Cited 104 times. doi: 10.1099/ijs.0.02827-0spa
dcterms.bibliographicCitationFormusa, P.A., Hsiang, T., Habash, M.B., Lee, H., Trevors, J.T. Genome sequence of Pseudomonas mandelii PD30 (Open Access) (2014) Genome Announcements, 2 (4), art. no. e00713-14. Cited 4 times. http://genomea.asm.org/content/2/4/e00713-14.full.pdf doi: 10.1128/genomeA.00713-14spa
dcterms.bibliographicCitationJang, S.-H., Kim, J., Kim, J., Hong, S., Lee, C. Genome sequence of cold-adapted Pseudomonas mandelii Strain JR-1 (Open Access) (2012) Journal of Bacteriology, 194 (12), pp. 3263-3263. Cited 29 times. http://jb.asm.org/content/194/12/3263.full.pdf doi: 10.1128/JB.00517-12spa
dcterms.bibliographicCitationLoperena, L., Soria, V., Varela, H., Lupo, S., Bergalli, A., Guigou, M., Pellegrino, A., (...), Batista, S. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica (Open Access) (2012) World Journal of Microbiology and Biotechnology, 28 (5), pp. 2249-2256. Cited 77 times. doi: 10.1007/s11274-012-1032-3spa
dcterms.bibliographicCitationCristóbal, H.A., Benito, J., Lovrich, G.A., Abate, C.M. Phylogenentic and enzymatic characterization of psychrophilic and psychrotolerant marine bacteria belong to γ-Proteobacteria group isolated from the sub-Antarctic Beagle Channel, Argentina (Open Access) (2015) Folia Microbiologica, 60 (3), pp. 183-198. Cited 11 times. www.biomed.cas.cz/mbu/folia/index.html doi: 10.1007/s12223-014-0351-1spa
dcterms.bibliographicCitationBozal, N., Montes, M.J., Mercadé, E. Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment (Open Access) (2007) International Journal of Systematic and Evolutionary Microbiology, 57 (11), pp. 2609-2612. Cited 35 times. doi: 10.1099/ijs.0.65141-0spa
dcterms.bibliographicCitationSoares Jr., F.L., Melo, I.S., Dias, A.C.F., Andreote, F.D. Cellulolytic bacteria from soils in harsh environments (2012) World Journal of Microbiology and Biotechnology, 28 (5), pp. 2195-2203. Cited 61 times. doi: 10.1007/s11274-012-1025-2spa
dcterms.bibliographicCitationSingh, S., Bajaj, B.K. Potential application spectrum of microbial proteases for clean and green industrial production (Open Access) (2017) Energy, Ecology and Environment, 2 (6), pp. 370-386. Cited 48 times. https://link.springer.com/journal/40974 doi: 10.1007/s40974-017-0076-5spa
dcterms.bibliographicCitationKuddus, M., Ramteke, P.W. Recent developments in production and biotechnological applications of cold-active microbial proteases (Open Access) (2012) Critical Reviews in Microbiology, 38 (4), pp. 330-338. Cited 66 times. doi: 10.3109/1040841X.2012.678477spa
dcterms.bibliographicCitationGopinath, S.C.B., Anbu, P., Arshad, M.K.M., Lakshmipriya, T., Voon, C.H., Hashim, U., Chinni, S.V. Biotechnological Processes in Microbial Amylase Production (Open Access) (2017) BioMed Research International, 2017, art. no. 1272193. Cited 113 times. http://www.hindawi.com/journals/biomed/ doi: 10.1155/2017/1272193spa
dcterms.bibliographicCitationWu, J., Geng, A., Xie, R., Wang, H., Sun, J. Characterization of cold adapted and ethanol tolerant β-glucosidase from Bacillus cellulosilyticus and its application for directed hydrolysis of cellobiose to ethanol (2018) International Journal of Biological Macromolecules, 109, pp. 872-879. Cited 20 times. www.elsevier.com/locate/ijbiomac doi: 10.1016/j.ijbiomac.2017.11.072spa
dcterms.bibliographicCitationRajendran, R., Pandi, A., Ramchary, A., Thiagarajan, H., Panneerselvam, J., Niraikulam, A., Kuppuswami, G.M., (...), Ramudu, K.N. Extracellular urease from Arthrobacter creatinolyticus MTCC 5604: scale up, purification and its cytotoxic effect thereof (Open Access) (2019) Molecular Biology Reports, 46 (1), pp. 133-141. Cited 7 times. doi: 10.1007/s11033-018-4453-8spa
dcterms.bibliographicCitationWang, T., Wang, S., Tang, X., Fan, X., Yang, S., Yao, L., Li, Y., (...), Han, H. Isolation of urease-producing bacteria and their effects on reducing Cd and Pb accumulation in lettuce (Lactuca sativa L.) (Open Access) (2020) Environmental Science and Pollution Research, 27 (8), pp. 8707-8718. Cited 29 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-019-06957-3spa
dcterms.bibliographicCitationStabnikov, V., Jian, C., Ivanov, V., Li, Y. Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand (Open Access) (2013) World Journal of Microbiology and Biotechnology, 29 (8), pp. 1453-1460. Cited 85 times. www.wkap.nl/journalhome.htm/0959-3993 doi: 10.1007/s11274-013-1309-1spa
dcterms.bibliographicCitationKasana, R.C., Gulati, A. Cellulases from psychrophilic microorganisms: A review (2011) Journal of Basic Microbiology, 51 (6), pp. 572-579. Cited 62 times. doi: 10.1002/jobm.201000385spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.18687/LACCEI2022.1.1.713
dc.subject.keywordsAmylasespa
dc.subject.keywordsCellulosespa
dc.subject.keywordsExtracellular Enzymesspa
dc.subject.keywordsPolar Environmentsspa
dc.subject.keywordsProteasespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.