Mostrar el registro sencillo del ítem

dc.contributor.authorHernández-Fernández, Joaquín
dc.contributor.authorCastro-Suarez, John R.
dc.contributor.authorToloza, Carlos A. T.
dc.date.accessioned2023-07-19T21:19:34Z
dc.date.available2023-07-19T21:19:34Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationHernández-Fernández, J., Castro-Suarez, J. R., & Toloza, C. A. (2022). Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. International Journal of Molecular Sciences, 23(19), 11708.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12198
dc.description.abstractFor the synthesis of polymeric resins, it is of great importance to review the raw materials and the equipment to be used to avoid the presence of compounds that may affect the effectiveness of the polymerization and the characteristics of the plastic to be obtained. Iron oxide is a compound that can be present in reactors after maintenance due to the techniques used and the cleaning of this equipment, and it can affect the characteristics of the resins, reducing their quality. In this study, the presence of FeO in different concentrations was evaluated to determine its effects on the properties and pyrolysis of polypropylene resins by using X-ray refraction to determine the elements of the samples, evaluating thermal degradation by TGA, the variation in molecular weight by measuring the MFI, and the compounds obtained from pyrolysis by chromatography. The results showed that the thermal degradation decreased as the FeO concentration increased, while for the MFI, the relationship was directly proportional. The evaluation of the compounds obtained from pyrolysis showed an increase in the production of alcohols, alkynes, ketones, and acids, and a decrease in alkanes and alkenes, showing that FeO affects the properties of polypropylene and the compounds that are produced during pyrolysis. © 2022 by the authors.spa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Molecular Sciencesspa
dc.titleIron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resinsspa
dcterms.bibliographicCitationMarcilla, A., Beltrán, M.I., Navarro, R. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions (2009) Applied Catalysis B: Environmental, 86 (1-2), pp. 78-86. Cited 186 times. doi: 10.1016/j.apcatb.2008.07.026spa
dcterms.bibliographicCitationHernández-Fernandez, J., Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography (2019) Journal of Chromatography A, 1607, art. no. 460442. Cited 29 times. www.elsevier.com/locate/chroma doi: 10.1016/j.chroma.2019.460442spa
dcterms.bibliographicCitationMartínez, M.C., Benavente, R., Gómez-Elvira, J.M. Molecular weight dependence and stereoselective chain cleavage during the early stages of the isotactic polypropylene pyrolysis (2017) Polymer Degradation and Stability, 143, pp. 26-34. Cited 14 times. doi: 10.1016/j.polymdegradstab.2017.06.011spa
dcterms.bibliographicCitationOnu, P., Vasile, C., Ciocîlteu, S., Iojoiu, E., Darie, H. Thermal and catalytic decomposition of polyethylene and polypropylene (1999) Journal of Analytical and Applied Pyrolysis, 49 (1), pp. 145-153. Cited 69 times. doi: 10.1016/S0165-2370(98)00109-0spa
dcterms.bibliographicCitationSakata, Y., Azhar Uddin, M., Muto, A., Kanada, Y., Koizumi, K., Murata, K. Catalytic degradation of polyethylene into fuel oil over mesoporous silica (KFS-16) catalyst (1997) Journal of Analytical and Applied Pyrolysis, 43 (1), pp. 15-25. Cited 103 times. doi: 10.1016/S0165-2370(97)00052-1spa
dcterms.bibliographicCitationSakata, Y., Uddin, Md.A., Muto, A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts (1999) Journal of Analytical and Applied Pyrolysis, 51 (1), pp. 135-155. Cited 241 times. doi: 10.1016/S0165-2370(99)00013-3spa
dcterms.bibliographicCitationAbbas-Abadi, M.S., Haghighi, M.N., Yeganeh, H., McDonald, A.G. Evaluation of pyrolysis process parameters on polypropylene degradation products (2014) Journal of Analytical and Applied Pyrolysis, 109, pp. 272-277. Cited 132 times. doi: 10.1016/j.jaap.2014.05.023spa
dcterms.bibliographicCitationBockhorn, H., Hornung, A., Hornung, U., Schawaller, D. Kinetic study on the thermal degradation of polypropylene and polyethylene (1999) Journal of Analytical and Applied Pyrolysis, 48 (2), pp. 93-109. Cited 338 times. doi: 10.1016/S0165-2370(98)00131-4spa
dcterms.bibliographicCitationAlbizzati, E., Galimberti, M. Catalysts for olefins polymerization (Open Access) (1998) Catalysis Today, 41 (1-3), pp. 159-168. Cited 39 times. http://www.sciencedirect.com/science/journal/09205861 doi: 10.1016/S0920-5861(98)00046-7spa
dcterms.bibliographicCitationCelina, M., George, G.A., Billingham, N.C. Physical spreading of oxidation in solid polypropylene as studied by chemiluminescence (1993) Polymer Degradation and Stability, 42 (3), pp. 335-344. Cited 101 times. doi: 10.1016/0141-3910(93)90229-Cspa
dcterms.bibliographicCitationGoss, B.G.S., Nakatani, H., George, G.A., Terano, M. Catalyst residue effects on the heterogeneous oxidation of polypropylene (2003) Polymer Degradation and Stability, 82 (1), pp. 119-126. Cited 37 times. doi: 10.1016/S0141-3910(03)00172-1spa
dcterms.bibliographicCitationThermal Oxidation—Adams—1970—Journal of Polymer Science Part A-1: Polymer Chemistry—Wiley Online Library Available online https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1970.150080505spa
dcterms.bibliographicCitationWu, X., Wu, Y., Wu, K., Chen, Y., Hu, H., Yang, M. Study on pyrolytic kinetics and behavior: The co-pyrolysis of microalgae and polypropylene (2015) Bioresource Technology, 192, pp. 522-528. Cited 87 times. www.elsevier.com/locate/biortech doi: 10.1016/j.biortech.2015.06.029spa
dcterms.bibliographicCitationKunwar, B., Cheng, H.N., Chandrashekaran, S.R., Sharma, B.K. Plastics to fuel: a review (2016) Renewable and Sustainable Energy Reviews, 54, pp. 421-428. Cited 396 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2015.10.015spa
dcterms.bibliographicCitationJoaquin, H.-F., Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene (2022) Journal of Analytical and Applied Pyrolysis, 161, art. no. 105385. Cited 16 times. https://www.journals.elsevier.com/journal-of-analytical-and-applied-pyrolysis doi: 10.1016/j.jaap.2021.105385spa
dcterms.bibliographicCitationHernández-Fernández, J., Rayón, E., López, J., Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants (2019) Macromolecular Materials and Engineering, 304 (11), art. no. 1900379. Cited 32 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1439-2054 doi: 10.1002/mame.201900379spa
dcterms.bibliographicCitationPavon, C., Aldas, M., López-Martínez, J., Hernández-Fernández, J., Patricia Arrieta, M. Films based on thermoplastic starch blended with pine resin derivatives for food packaging (2021) Foods, 10 (6), art. no. 1171. Cited 20 times. https://www.mdpi.com/2304-8158/10/6/1171/pdf doi: 10.3390/foods10061171spa
dcterms.bibliographicCitationGómez-Contreras, P., Figueroa-Lopez, K.J., Hernández-Fernández, J., Rodríguez, M.C., Ortega-Toro, R. Effect of different essential oils on the properties of edible coatings based on yam (Dioscorea rotundata l.) starch and its application in strawberry (fragaria vesca l.) preservation (2021) Applied Sciences (Switzerland), 11 (22), art. no. 11057. Cited 11 times. https://www.mdpi.com/2076-3417/11/22/11057/pdf doi: 10.3390/app112211057spa
dcterms.bibliographicCitationHernández-Fernández, J., Guerra, Y., Puello-Polo, E., Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene (2022) Polymers, 14 (15), art. no. 3123. Cited 14 times. http://www.mdpi.com/journal/polymers doi: 10.3390/polym14153123spa
dcterms.bibliographicCitationAurrekoetxea, J., Sarrionandia, M.A., Urrutibeascoa, I., Maspoch, M.Ll. Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene (2001) Journal of Materials Science, 36 (11), pp. 2607-2613. Cited 151 times. doi: 10.1023/A:1017983907260spa
dcterms.bibliographicCitationBahlouli, N., Pessey, D., Raveyre, C., Guillet, J., Ahzi, S., Dahoun, A., Hiver, J.M. Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites (2012) Materials and Design, 33 (1), pp. 451-458. Cited 87 times. doi: 10.1016/j.matdes.2011.04.049spa
dcterms.bibliographicCitationSalakhov, I.I., Bukatov, G.D., Batyrshin, A.Z., Matsko, M.A., Barabanov, A.A., Tavtorkin, A.N., Temnikova, E.V., (...), Sakhabutdinov, A.G. Synthesis of Polypropylene in the Liquid Monomer in the Presence of a Titanium—Magnesium Catalyst: Effect of Various Internal Donors (2019) Russian Journal of Applied Chemistry, 92 (6), pp. 796-808. Cited 3 times. http://www.springerlink.com/content/1070-4272 doi: 10.1134/S1070427219060090spa
dcterms.bibliographicCitationForte, M.C., Coutinho, F.M.B. The influence of catalyst system and polymerization conditions on polypropylene properties (1996) European Polymer Journal, 32 (5), pp. 605-611. Cited 24 times. doi: 10.1016/0014-3057(95)00176-Xspa
dcterms.bibliographicCitationArjmand, S., Shakeri, A., Arabi, H. Effect of water and carbonyl sulfide toxins in gas propylene feed in polymerization process on physical properties of polypropylene (2019) Journal of Polymer Research, 26 (8), art. no. 195. Cited 3 times. www.springer.com/journal/10965 doi: 10.1007/s10965-019-1860-zspa
dcterms.bibliographicCitationBremner, T., Rudin, A., Cook, D.G. Melt flow index values and molecular weight distributions of commercial thermoplastics (1990) Journal of Applied Polymer Science, 41 (7-8), pp. 1617-1627. Cited 160 times. doi: 10.1002/app.1990.070410721spa
dcterms.bibliographicCitationBremner, T., Rudin, A., Cook, D.G. Melt flow index values and molecular weight distributions of commercial thermoplastics (1990) Journal of Applied Polymer Science, 41 (7-8), pp. 1617-1627. Cited 160 times. doi: 10.1002/app.1990.070410721spa
dcterms.bibliographicCitationHe, Q., Yuan, T., Zhu, J., Luo, Z., Haldolaarachchige, N., Sun, L., Khasanov, A., (...), Guo, Z. Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@FeO core-shell nanoparticles (2012) Polymer, 53 (16), pp. 3642-3652. Cited 79 times. http://www.journals.elsevier.com/polymer/ doi: 10.1016/j.polymer.2012.06.010spa
dcterms.bibliographicCitationBahri-Laleh, N. Interaction of different poisons with MgCl 2 /TiCl 4 based Ziegler-Natta catalysts (2016) Applied Surface Science, 379, pp. 395-401. Cited 33 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2016.04.034spa
dcterms.bibliographicCitationFeng, J., Hao, J., Du, J., Yang, R. Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite (Open Access) (2012) Polymer Degradation and Stability, 97 (4), pp. 605-614. Cited 119 times. doi: 10.1016/j.polymdegradstab.2012.01.011spa
dcterms.bibliographicCitationLin, X., Zhang, Z., Zhang, Z., Sun, J., Wang, Q., Pittman, C.U. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts (Open Access) (2018) Waste Management, 79, pp. 38-47. Cited 80 times. www.elsevier.com/locate/wasman doi: 10.1016/j.wasman.2018.07.021spa
dcterms.bibliographicCitationWang, J., Jiang, J., Meng, X., Li, M., Wang, X., Pang, S., Wang, K., (...), Ragauskas, A.J. Promoting Aromatic Hydrocarbon Formation via Catalytic Pyrolysis of Polycarbonate Wastes over Fe- And Ce-Loaded Aluminum Oxide Catalysts (2020) Environmental Science and Technology, 54 (13), pp. 8390-8400. Cited 29 times. http://pubs.acs.org/journal/esthag doi: 10.1021/acs.est.0c00899spa
dcterms.bibliographicCitationJoaquin, H.-F., Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization (Open Access) (2020) Journal of Chromatography A, 1614, art. no. 460736. Cited 23 times. www.elsevier.com/locate/chroma doi: 10.1016/j.chroma.2019.460736spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/ijms231911708
dc.subject.keywordsPlastic Waste;spa
dc.subject.keywordsPyrolysis;spa
dc.subject.keywordsCatalystspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.