Mostrar el registro sencillo del ítem
ISeeU2: Visually interpretable mortality prediction inside the ICU using deep learning and free-text medical notes
dc.contributor.author | Caicedo-Torres, William | |
dc.contributor.author | Gutierrez, Jairo | |
dc.date.accessioned | 2023-07-19T21:19:25Z | |
dc.date.available | 2023-07-19T21:19:25Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2023 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12197 | |
dc.description.abstract | Accurate mortality prediction allows Intensive Care Units (ICUs) to adequately benchmark clinical practice and identify patients with unexpected outcomes. Traditionally, simple statistical models have been used to assess patient death risk, many times with sub-optimal performance. On the other hand Deep Learning holds promise to positively impact clinical practice by leveraging medical data to assist diagnosis and prediction, including mortality prediction. However, as the question of whether powerful Deep Learning models attend correlations backed by sound medical knowledge when generating predictions remains open, additional interpretability tools are needed to foster trust and encourage the use of AI by clinicians. In this work we show an interpretable Deep Learning model trained on MIMIC-III to predict mortality inside the ICU using raw nursing notes, together with visual explanations for word importance based on the Shapley Value. Our model reaches a ROC of 0.8629 (±0.0058), outperforming the traditional SAPS-II score and a LSTM recurrent neural network baseline while providing enhanced interpretability when compared with similar Deep Learning approaches. Supporting code can be found at https://github.com/williamcaicedo/ISeeU2. © 2022 Elsevier Ltd | spa |
dc.format.extent | 32 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Expert Systems with Applications | spa |
dc.title | ISeeU2: Visually interpretable mortality prediction inside the ICU using deep learning and free-text medical notes | spa |
dcterms.bibliographicCitation | Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., (...), Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2015) None, 1 (212), p. 19. Cited 130 times. URL http://download.tensorflow.org/paper/whitepaper2015.pdf | spa |
dcterms.bibliographicCitation | Blagus, R., Lusa, L. SMOTE for high-dimensional class-imbalanced data (2013) BMC Bioinformatics, 14, art. no. 106. Cited 502 times. http://www.biomedcentral.com/1471-2105/14/106 doi: 10.1186/1471-2105-14-106 | spa |
dcterms.bibliographicCitation | Caicedo-Torres, W., Gutierrez, J. ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU (2019) Journal of Biomedical Informatics, 98, art. no. 103269. Cited 43 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2019.103269 | spa |
dcterms.bibliographicCitation | Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique (2002) Journal of Artificial Intelligence Research, 16, pp. 321-357. Cited 15650 times. http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a.pdf doi: 10.1613/jair.953 | spa |
dcterms.bibliographicCitation | Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y. Recurrent neural networks for multivariate time series with missing values (2016) . Cited 90 times. CoRR, abs/1606.0. URL | spa |
dcterms.bibliographicCitation | Chen, B., Xia, S., Chen, Z., Wang, B., Wang, G. RSMOTE: A self-adaptive robust SMOTE for imbalanced problems with label noise (2021) Information Sciences, 553, pp. 397-428. Cited 61 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2020.10.013 | spa |
dcterms.bibliographicCitation | Cooper, G.F., Aliferis, C.F., Ambrosino, R., Aronis, J., Buchanan, B.G., Caruana, R., Fine, M.J., (...), Spirtes, P. An evaluation of machine-learning methods for predicting pneumonia mortality (1997) Artificial Intelligence in Medicine, 9 (2), pp. 107-138. Cited 124 times. doi: 10.1016/S0933-3657(96)00367-3 | spa |
dcterms.bibliographicCitation | Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding (2019) NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, pp. 4171-4186. Cited 21944 times. ISBN: 978-195073713-0 | spa |
dcterms.bibliographicCitation | Emanuel, E.J., Persad, G., Upshur, R., Thome, B., Parker, M., Glickman, A., Zhang, C., (...), Phillips, J.P. Fair allocation of scarce medical resources in the time of covid-19 (2020) New England Journal of Medicine, 382 (21), pp. 2049-2055. Cited 1885 times. http://www.nejm.org/medical-index doi: 10.1056/NEJMsb2005114 | spa |
dcterms.bibliographicCitation | Gall, J.-R., Lemeshow, S., Saulnier, F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study (1993) JAMA: The Journal of the American Medical Association, 270 (24), pp. 2957-2963. Cited 5758 times. doi: 10.1001/jama.1993.03510240069035 | spa |
dcterms.bibliographicCitation | Grasselli, G., Pesenti, A., Cecconi, M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast during an Emergency Response (2020) JAMA - Journal of the American Medical Association, 323 (16), pp. 1545-1546. Cited 1411 times. http://jama.jamanetwork.com/journal.aspx doi: 10.1001/jama.2020.4031 | spa |
dcterms.bibliographicCitation | Hochreiter, S., Schmidhuber, J. Long Short-Term Memory (1997) Neural Computation, 9 (8), pp. 1735-1780. Cited 53930 times. http://www.mitpressjournals.org/loi/neco doi: 10.1162/neco.1997.9.8.1735 | spa |
dcterms.bibliographicCitation | Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.-W.H., Feng, M., Ghassemi, M., Moody, B., (...), Mark, R.G. MIMIC-III, a freely accessible critical care database (2016) Scientific Data, 3, art. no. 160035. Cited 3528 times. www.nature.com/sdata/ doi: 10.1038/sdata.2016.35 | spa |
dcterms.bibliographicCitation | Johnson, A.E.W., Stone, D.J., Celi, L.A., Pollard, T.J. The MIMIC Code Repository: Enabling reproducibility in critical care research (2018) Journal of the American Medical Informatics Association, 25 (1), art. no. ocx084, pp. 32-39. Cited 173 times. http://jamia.oxfordjournals.org/content/22/e1 doi: 10.1093/jamia/ocx084 | spa |
dcterms.bibliographicCitation | Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining (2020) Bioinformatics, 36 (4), pp. 1234-1240. Cited 1854 times. http://bioinformatics.oxfordjournals.org/ doi: 10.1093/bioinformatics/btz682 | spa |
dcterms.bibliographicCitation | Lipton, Z.C., Kale, D., Wetzel, R. Directly modeling missing data in sequences with RNNs: Improved classification of clinical time series (2016) Proceedings of the 1st machine learning for healthcare conference, Proceedings of machine learning research, 56, pp. 253-270. Cited 167 times. Doshi-Velez F. Fackler J. Kale D. Wallace B. Weins J. PMLR Northeastern University, Boston, MA, USA URL http://proceedings.mlr.press/v56/Lipton16.html | spa |
dcterms.bibliographicCitation | Lundberg, S.M., Lee, S.-I. A unified approach to interpreting model predictions (Open Access) (2017) Advances in Neural Information Processing Systems, 2017-December, pp. 4766-4775. Cited 6213 times. | spa |
dcterms.bibliographicCitation | Naseriparsa, M., Al-Shammari, A., Sheng, M., Zhang, Y., Zhou, R. RSMOTE: improving classification performance over imbalanced medical datasets (2020) Health Information Science and Systems, 8 (1), art. no. 22. Cited 14 times. http://www.springer.com/journal/13755/about doi: 10.1007/s13755-020-00112-w | spa |
dcterms.bibliographicCitation | Purushotham, S., Meng, C., Che, Z., Liu, Y. Benchmarking deep learning models on large healthcare datasets (Open Access) (2018) Journal of Biomedical Informatics, 83, pp. 112-134. Cited 179 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2018.04.007 | spa |
dcterms.bibliographicCitation | Rapsang, A.G., Shyam, D.C. Scoring systems in the intensive care unit: A compendium (Open Access) (2014) Indian Journal of Critical Care Medicine, 18 (4), pp. 220-228. Cited 106 times. https://www.ijccm.org/lov/IJCCM doi: 10.4103/0972-5229.130573 | spa |
dcterms.bibliographicCitation | Shen, D., Wu, G., Suk, H.-I. Deep Learning in Medical Image Analysis (2017) Annual Review of Biomedical Engineering, 19, pp. 221-248. Cited 2467 times. http://arjournals.annualreviews.org/loi/bioeng doi: 10.1146/annurev-bioeng-071516-044442 | spa |
dcterms.bibliographicCitation | Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis (2018) IEEE Journal of Biomedical and Health Informatics, 22 (5), art. no. 8086133, pp. 1589-1604. Cited 582 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 doi: 10.1109/JBHI.2017.2767063 | spa |
dcterms.bibliographicCitation | Si, Y., Roberts, K. (2019) Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction. In AMIA joint summits on translational science proceedings. AMIA joint summits on translational science. | spa |
dcterms.bibliographicCitation | Sushil, M., Šuster, S., Luyckx, K., Daelemans, W. Patient representation learning and interpretable evaluation using clinical notes (Open Access) (2018) Journal of Biomedical Informatics, 84, pp. 103-113. Cited 26 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2018.06.016 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1016/j.eswa.2022.117190 | |
dc.subject.keywords | Imbalanced Data; | spa |
dc.subject.keywords | Cost-Sensitive Learning; | spa |
dc.subject.keywords | Data Classification | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.