Mostrar el registro sencillo del ítem

dc.contributor.authorCaicedo-Torres, William
dc.contributor.authorGutierrez, Jairo
dc.date.accessioned2023-07-19T21:19:25Z
dc.date.available2023-07-19T21:19:25Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12197
dc.description.abstractAccurate mortality prediction allows Intensive Care Units (ICUs) to adequately benchmark clinical practice and identify patients with unexpected outcomes. Traditionally, simple statistical models have been used to assess patient death risk, many times with sub-optimal performance. On the other hand Deep Learning holds promise to positively impact clinical practice by leveraging medical data to assist diagnosis and prediction, including mortality prediction. However, as the question of whether powerful Deep Learning models attend correlations backed by sound medical knowledge when generating predictions remains open, additional interpretability tools are needed to foster trust and encourage the use of AI by clinicians. In this work we show an interpretable Deep Learning model trained on MIMIC-III to predict mortality inside the ICU using raw nursing notes, together with visual explanations for word importance based on the Shapley Value. Our model reaches a ROC of 0.8629 (±0.0058), outperforming the traditional SAPS-II score and a LSTM recurrent neural network baseline while providing enhanced interpretability when compared with similar Deep Learning approaches. Supporting code can be found at https://github.com/williamcaicedo/ISeeU2. © 2022 Elsevier Ltdspa
dc.format.extent32 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceExpert Systems with Applicationsspa
dc.titleISeeU2: Visually interpretable mortality prediction inside the ICU using deep learning and free-text medical notesspa
dcterms.bibliographicCitationAbadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., (...), Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2015) None, 1 (212), p. 19. Cited 130 times. URL http://download.tensorflow.org/paper/whitepaper2015.pdfspa
dcterms.bibliographicCitationBlagus, R., Lusa, L. SMOTE for high-dimensional class-imbalanced data (2013) BMC Bioinformatics, 14, art. no. 106. Cited 502 times. http://www.biomedcentral.com/1471-2105/14/106 doi: 10.1186/1471-2105-14-106spa
dcterms.bibliographicCitationCaicedo-Torres, W., Gutierrez, J. ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU (2019) Journal of Biomedical Informatics, 98, art. no. 103269. Cited 43 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2019.103269spa
dcterms.bibliographicCitationChawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique (2002) Journal of Artificial Intelligence Research, 16, pp. 321-357. Cited 15650 times. http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a.pdf doi: 10.1613/jair.953spa
dcterms.bibliographicCitationChe, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y. Recurrent neural networks for multivariate time series with missing values (2016) . Cited 90 times. CoRR, abs/1606.0. URLspa
dcterms.bibliographicCitationChen, B., Xia, S., Chen, Z., Wang, B., Wang, G. RSMOTE: A self-adaptive robust SMOTE for imbalanced problems with label noise (2021) Information Sciences, 553, pp. 397-428. Cited 61 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2020.10.013spa
dcterms.bibliographicCitationCooper, G.F., Aliferis, C.F., Ambrosino, R., Aronis, J., Buchanan, B.G., Caruana, R., Fine, M.J., (...), Spirtes, P. An evaluation of machine-learning methods for predicting pneumonia mortality (1997) Artificial Intelligence in Medicine, 9 (2), pp. 107-138. Cited 124 times. doi: 10.1016/S0933-3657(96)00367-3spa
dcterms.bibliographicCitationDevlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding (2019) NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, pp. 4171-4186. Cited 21944 times. ISBN: 978-195073713-0spa
dcterms.bibliographicCitationEmanuel, E.J., Persad, G., Upshur, R., Thome, B., Parker, M., Glickman, A., Zhang, C., (...), Phillips, J.P. Fair allocation of scarce medical resources in the time of covid-19 (2020) New England Journal of Medicine, 382 (21), pp. 2049-2055. Cited 1885 times. http://www.nejm.org/medical-index doi: 10.1056/NEJMsb2005114spa
dcterms.bibliographicCitationGall, J.-R., Lemeshow, S., Saulnier, F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study (1993) JAMA: The Journal of the American Medical Association, 270 (24), pp. 2957-2963. Cited 5758 times. doi: 10.1001/jama.1993.03510240069035spa
dcterms.bibliographicCitationGrasselli, G., Pesenti, A., Cecconi, M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast during an Emergency Response (2020) JAMA - Journal of the American Medical Association, 323 (16), pp. 1545-1546. Cited 1411 times. http://jama.jamanetwork.com/journal.aspx doi: 10.1001/jama.2020.4031spa
dcterms.bibliographicCitationHochreiter, S., Schmidhuber, J. Long Short-Term Memory (1997) Neural Computation, 9 (8), pp. 1735-1780. Cited 53930 times. http://www.mitpressjournals.org/loi/neco doi: 10.1162/neco.1997.9.8.1735spa
dcterms.bibliographicCitationJohnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.-W.H., Feng, M., Ghassemi, M., Moody, B., (...), Mark, R.G. MIMIC-III, a freely accessible critical care database (2016) Scientific Data, 3, art. no. 160035. Cited 3528 times. www.nature.com/sdata/ doi: 10.1038/sdata.2016.35spa
dcterms.bibliographicCitationJohnson, A.E.W., Stone, D.J., Celi, L.A., Pollard, T.J. The MIMIC Code Repository: Enabling reproducibility in critical care research (2018) Journal of the American Medical Informatics Association, 25 (1), art. no. ocx084, pp. 32-39. Cited 173 times. http://jamia.oxfordjournals.org/content/22/e1 doi: 10.1093/jamia/ocx084spa
dcterms.bibliographicCitationLee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining (2020) Bioinformatics, 36 (4), pp. 1234-1240. Cited 1854 times. http://bioinformatics.oxfordjournals.org/ doi: 10.1093/bioinformatics/btz682spa
dcterms.bibliographicCitationLipton, Z.C., Kale, D., Wetzel, R. Directly modeling missing data in sequences with RNNs: Improved classification of clinical time series (2016) Proceedings of the 1st machine learning for healthcare conference, Proceedings of machine learning research, 56, pp. 253-270. Cited 167 times. Doshi-Velez F. Fackler J. Kale D. Wallace B. Weins J. PMLR Northeastern University, Boston, MA, USA URL http://proceedings.mlr.press/v56/Lipton16.htmlspa
dcterms.bibliographicCitationLundberg, S.M., Lee, S.-I. A unified approach to interpreting model predictions (Open Access) (2017) Advances in Neural Information Processing Systems, 2017-December, pp. 4766-4775. Cited 6213 times.spa
dcterms.bibliographicCitationNaseriparsa, M., Al-Shammari, A., Sheng, M., Zhang, Y., Zhou, R. RSMOTE: improving classification performance over imbalanced medical datasets (2020) Health Information Science and Systems, 8 (1), art. no. 22. Cited 14 times. http://www.springer.com/journal/13755/about doi: 10.1007/s13755-020-00112-wspa
dcterms.bibliographicCitationPurushotham, S., Meng, C., Che, Z., Liu, Y. Benchmarking deep learning models on large healthcare datasets (Open Access) (2018) Journal of Biomedical Informatics, 83, pp. 112-134. Cited 179 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2018.04.007spa
dcterms.bibliographicCitationRapsang, A.G., Shyam, D.C. Scoring systems in the intensive care unit: A compendium (Open Access) (2014) Indian Journal of Critical Care Medicine, 18 (4), pp. 220-228. Cited 106 times. https://www.ijccm.org/lov/IJCCM doi: 10.4103/0972-5229.130573spa
dcterms.bibliographicCitationShen, D., Wu, G., Suk, H.-I. Deep Learning in Medical Image Analysis (2017) Annual Review of Biomedical Engineering, 19, pp. 221-248. Cited 2467 times. http://arjournals.annualreviews.org/loi/bioeng doi: 10.1146/annurev-bioeng-071516-044442spa
dcterms.bibliographicCitationShickel, B., Tighe, P.J., Bihorac, A., Rashidi, P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis (2018) IEEE Journal of Biomedical and Health Informatics, 22 (5), art. no. 8086133, pp. 1589-1604. Cited 582 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 doi: 10.1109/JBHI.2017.2767063spa
dcterms.bibliographicCitationSi, Y., Roberts, K. (2019) Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction. In AMIA joint summits on translational science proceedings. AMIA joint summits on translational science.spa
dcterms.bibliographicCitationSushil, M., Šuster, S., Luyckx, K., Daelemans, W. Patient representation learning and interpretable evaluation using clinical notes (Open Access) (2018) Journal of Biomedical Informatics, 84, pp. 103-113. Cited 26 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2018.06.016spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.eswa.2022.117190
dc.subject.keywordsImbalanced Data;spa
dc.subject.keywordsCost-Sensitive Learning;spa
dc.subject.keywordsData Classificationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.