Mostrar el registro sencillo del ítem

dc.contributor.authorFajardo, J.
dc.contributor.authorYabrudy, D.
dc.contributor.authorBarreto, D.
dc.contributor.authorNegrete, C.
dc.contributor.authorSarria, B.
dc.contributor.authorCardona, C.
dc.date.accessioned2023-07-19T21:17:17Z
dc.date.available2023-07-19T21:17:17Z
dc.date.issued2020
dc.date.submitted2023
dc.identifier.citationYabrudy Mercado, D., Fajardo Cuadro, J., Sarria López, B., & Cardona Agudelo, C. (2020). Efficiency centered maintenance for preheat trains of crude oil distillation units. Frontiers in Heat and Mass Transfer (FHMT), 15(1).spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12184
dc.description.abstractNowadays, maintenance is based on the synergistic integration of operational reliability and timely maintenance, which guarantees the required availability and optimal cost. Operational reliability implies producing more, better performance, longer life, and availability. Timely maintenance involves the least time out of service, fewer maintenance costs, fewer operating costs, and less money. In this work, we study the preheating train of a crude distillation unit of a refinery, which processes 994 m3/h, which presents a formation of a foulinglayer inside it. Among the impacts of fouling is the reduction in the effectiveness of heat transfer, the increase in fuel consumption, the increase in CO2 emissions, the increase in maintenance costs, and the decrease in the profit margin of process. An appropriate cleaning program of the surface of the heat exchanger network is necessary to preserve its key performance parameters, preferably close to design values. This paper presents the maintenance method centered on energy efficiency, to plan the intervention of the preheating train equipment maintenance, which considers the economic energy improvement and the cost of the type of maintenance. The method requires the calculation of the fouling evolution from which the global heat transfer coefficient is obtained, and the heat flux is determined as a function of time. It was observed that, as time passes, the resistance provided by fouling increases and that the overall heat transfer coefficient decreases. The energy efficiency centered maintenance has an indicator of economic justification (factor J) that relates the economic-energy improvement achieved when performing maintenance, taking into account the economic effort invested. Depending on the cost of the type of maintenance to be performed, a threshold should be chosen, from which the maintenance activity is justified. The effectiveness values of the heat exchanger (e) and the J indicator are used to form a criticality matrix, which allows prioritizing maintenance activities in each equipment. The planning of the implementation dates of the maintenance of each heat exchanger, from the maintenance method centered on energy efficiency applied to the crude distillation unit's, preheat train, constitutes a contribution in this specific field. The conceptual design of the maintenance method centered on energy efficiency presented in this work is feasible for other heat transfer equipment used in oil refineries and industry in general. The procedure developed uses real operation values, and with its implementation, a saving of 150000 US dollars was achieved. © 2020 ASME.spa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)spa
dc.titleEfficiency Centered Maintenance of Preheat Train of a Crude Oil Distillation Unitspa
dcterms.bibliographicCitationColetti, F., Macchietto, S. A heat exchanger model to increase energy efficiency in refinery pre heat trains (2009) Computer Aided Chemical Engineering, 26, pp. 1245-1250. Cited 16 times. ISBN: 978-044453433-0 doi: 10.1016/S1570-7946(09)70207-Xspa
dcterms.bibliographicCitationChebeir, J., Webb, Z.T., Romagnoli, J.A. An environment for topology analysis and data reconciliation of the pre-heat train in an industrial refinery (2019) Applied Thermal Engineering, 147, pp. 623-635. Cited 9 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.10.081spa
dcterms.bibliographicCitationNegrão, C.O.R., Tonin, P.C., Madi, M. Supervision of the thermal performance of heat exchanger trains (2007) Applied Thermal Engineering, 27 (2-3), pp. 347-357. Cited 12 times. doi: 10.1016/j.applthermaleng.2006.07.025spa
dcterms.bibliographicCitationDeshannavar, U.B., Ramasamy, M. A model to determine maximum heat flux under forced convective heat transfer regime for crude oil fouling studies (2019) Applied Thermal Engineering, 156, pp. 485-493. Cited 10 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2019.04.091spa
dcterms.bibliographicCitationOchoa-Estopier, L.M., Jobson, M., Chen, L. Area-based optimization approach for refinery heat exchanger networks (2018) Applied Thermal Engineering, 129, pp. 606-617. Cited 11 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.10.049spa
dcterms.bibliographicCitationLoyola-Fuentes, J., Smith, R. Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition (2019) Energy, 183, pp. 368-384. Cited 22 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2019.06.119spa
dcterms.bibliographicCitationColetti, F., Macchietto, S. A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling (2011) Industrial and Engineering Chemistry Research, 50 (8), pp. 4515-4533. Cited 89 times. http://pubs.acs.org/journal/iecred doi: 10.1021/ie901991gspa
dcterms.bibliographicCitationBehranvand, E., Mozdianfard, M.R., Diaz-Bejarano, E., Coletti, F., Orzlowski, P., Macchietto, S. A comprehensive investigation of refinery preheaters foulant samples originated by heavy crude oil fractions as heating fluids (2018) Fuel, 224, pp. 529-536. Cited 8 times. http://www.journals.elsevier.com/fuel/ doi: 10.1016/j.fuel.2018.03.077spa
dcterms.bibliographicCitationDiaz-Bejarano, E., Coletti, F., Macchietto, S. Modeling and Prediction of Shell-Side Fouling in Shell-and-Tube Heat Exchangers (2018) Heat Transfer Engineering, 1, pp. 1-16. Cited 3 times.spa
dcterms.bibliographicCitationWang, F.-L., He, Y.-L., Tong, Z.-X., Tang, S.-Z. Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems (2017) International Journal of Heat and Mass Transfer, 104, pp. 774-786. Cited 84 times. http://www.journals.elsevier.com/international-journal-of-heat-and-mass-transfer/ doi: 10.1016/j.ijheatmasstransfer.2016.08.112spa
dcterms.bibliographicCitationColetti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks; a thermo- hydraulic based analysis (2010) Computer Aided Chemical Engineering, 28 (C), pp. 19-24. Cited 11 times. http://www.elsevier.com/wps/find/bookdescription.cws_home/BS_CCE/description#description doi: 10.1016/S1570-7946(10)28004-5spa
dcterms.bibliographicCitationWang, Y., Zhan, S., Feng, X. Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure (2015) Energy, 93, pp. 1478-1488. Cited 15 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2015.09.130spa
dcterms.bibliographicCitationTian, J., Wang, Y., Feng, X. Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks (2016) Energy, 109, pp. 1118-1129. Cited 36 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.05.053spa
dcterms.bibliographicCitationIshiyama, E.M., Heins, A.V., Paterson, W.R., Spinelli, L., Wilson, D.I. Scheduling cleaning in a crude oil preheat train subject to fouling: Incorporating desalter control (2010) Applied Thermal Engineering, 30 (13), pp. 1852-1862. Cited 64 times. doi: 10.1016/j.applthermaleng.2010.04.027spa
dcterms.bibliographicCitationSmith, R., Loyola-Fuentes, J., Jobson, M. Fouling in heat exchanger networks (2017) Chemical Engineering Transactions, 61, pp. 1789-1794. Cited 11 times. http://www.aidic.it/cet/ doi: 10.3303/CET1761296spa
dcterms.bibliographicCitationSchlunder, E. U., Transfer, I. C. f. H. a. M. (1983) Heat exchanger design handbook. Cited 678 times. Hemisphere Pub. Corpspa
dcterms.bibliographicCitationSekulic, y D. P. (2003) Fundamentals of heat exchanger design. Cited 2344 times. Shah R. K. (K). John Wiley & Sonsspa
dcterms.bibliographicCitationKuppan, T. (2013) Heat exchanger design handbook. Cited 678 times. CRC Pressspa
dcterms.bibliographicCitationIncropera, F. P. (2007) Fundamentals of heat and mass transfer. Cited 22043 times. John Wileyspa
dcterms.bibliographicCitationCengel, Y. A. (2003) Heat Transfer A practical Approach. Cited 3070 times. 2nd ed., Columbus, GA, USA: Mc-Graw Hill Educationspa
dcterms.bibliographicCitationYeap, B.L., Wilson, D.I., Polley, G.T., Pugh, S.J. Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models (Open Access) (2004) Chemical Engineering Research and Design, 82 (1), pp. 53-71. Cited 159 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description doi: 10.1205/026387604772803070spa
dcterms.bibliographicCitationWaters, A. J., Akinradewo, C. G., Lamb, D. Fouling: Implementation of a Crude Preheat Train Performance Monitoring Application at the Irving Oil Refinery (2009) Int. Conf. Heat Exch. Fouling Clean. VIII, 2009, pp. 33-38. Cited 11 times.spa
dcterms.bibliographicCitationAssis, B.C.G., Gonçalves, C.D.O., Liporace, F.S., Oliveira, S.G., Queiroz, E.M., Pessoa, F.L.P., Costa, A.L.H. Constrained thermohydraulic optimization of the flow rate distribution in crude preheat trains (2013) Chemical Engineering Research and Design, 91 (8), pp. 1517-1526. Cited 15 times. doi: 10.1016/j.cherd.2013.06.005spa
dcterms.bibliographicCitationPolley, G.T., Wilson, D.I., Yeap, B.L., Pugh, S.J. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains (2002) Applied Thermal Engineering, 22 (7), pp. 777-788. Cited 122 times. doi: 10.1016/S1359-4311(02)00023-6spa
dcterms.bibliographicCitationTajudin, Z. B. (2015) Experiments, Modelling and Validation of Crude Oil Fouling on Large Scale Rig. Cited 3 times. PhD Thesis., London: Imperial College Londonspa
dcterms.bibliographicCitationKern, D., Seaton, R. A theoretical analysis of thermal surface fouling (1959) Br Chem Eng, 4, pp. 258-262. Cited 441 times.spa
dcterms.bibliographicCitationLudwig, E. E. (1997) Applied process design for chemical and petrochemical plants, 2. Cited 225 times. Third ed., Houston, TX. Gulf Professional Publishingspa
dcterms.bibliographicCitationSanaye, S., Niroomand, B. Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule (2007) Energy Conversion and Management, 48 (5), pp. 1450-1461. Cited 47 times. doi: 10.1016/j.enconman.2006.12.006spa
dcterms.bibliographicCitationCaputo, A.C., Pelagagge, P.M., Salini, P. Joint economic optimization of heat exchanger design and maintenance policy (Open Access) (2011) Applied Thermal Engineering, 31 (8-9), pp. 1381-1392. Cited 44 times. doi: 10.1016/j.applthermaleng.2010.12.033spa
dcterms.bibliographicCitationIzyan, Z. N., Noryani, M., Dayanasari, A. H., Shuhaimi, M. MINLP model for simultaneous scheduling and retrofit of refinery preheat train (2014) Int. J. Energy Environ, 5 (2), pp. 197-206. Cited 3 times.spa
dcterms.bibliographicCitation(2007) Standard of the Tubular Exchanger Manufacturers Association. Cited 389 times. Tubular Exchanger Manufacturers Association Inc., Ninth Edition, Tarrytown, NY. Tubular Exchanger Manufacturers Association Incspa
dcterms.bibliographicCitationBiyanto, T.R., Ramasamy, M., Jameran, A.B., Fibrianto, H.Y. Thermal and hydraulic impacts consideration in refinery crude preheat train cleaning scheduling using recent stochastic optimization methods (2016) Applied Thermal Engineering, 108, pp. 1436-1450. Cited 22 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.05.068spa
dcterms.bibliographicCitationWatkinson, A. (2003) Comparison of Crude Oil Fouling Using Two Different Probes, pp. 234-241. Cited 16 times. de Heat Exchanger Fouling and Cleaning: Fundamentals and Applicationsspa
dcterms.bibliographicCitationKern, D. Q. (1997) Process heat transfer. Cited 1213 times. Tate McGraw-Hill Publishing Companyspa
dcterms.bibliographicCitationaminski, D., Jensen, M. K. (2005) Introduction to thermal and fluids engineering. Cited 73 times. Danvers, MA. John Wiley & Sons Incspa
dcterms.bibliographicCitationGonzález Fernández, F. J. (2004) Auditoría del mantenimiento e indicadores de gestión. Cited 4 times. 1st ed., Madrid, España: Fundación Confemetalspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1115/IMECE2020-23186
dc.subject.keywordsFouling;spa
dc.subject.keywordsHeat Exchangers;spa
dc.subject.keywordsTubespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.