Mostrar el registro sencillo del ítem
Efficiency Centered Maintenance of Preheat Train of a Crude Oil Distillation Unit
dc.contributor.author | Fajardo, J. | |
dc.contributor.author | Yabrudy, D. | |
dc.contributor.author | Barreto, D. | |
dc.contributor.author | Negrete, C. | |
dc.contributor.author | Sarria, B. | |
dc.contributor.author | Cardona, C. | |
dc.date.accessioned | 2023-07-19T21:17:17Z | |
dc.date.available | 2023-07-19T21:17:17Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2023 | |
dc.identifier.citation | Yabrudy Mercado, D., Fajardo Cuadro, J., Sarria López, B., & Cardona Agudelo, C. (2020). Efficiency centered maintenance for preheat trains of crude oil distillation units. Frontiers in Heat and Mass Transfer (FHMT), 15(1). | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12184 | |
dc.description.abstract | Nowadays, maintenance is based on the synergistic integration of operational reliability and timely maintenance, which guarantees the required availability and optimal cost. Operational reliability implies producing more, better performance, longer life, and availability. Timely maintenance involves the least time out of service, fewer maintenance costs, fewer operating costs, and less money. In this work, we study the preheating train of a crude distillation unit of a refinery, which processes 994 m3/h, which presents a formation of a foulinglayer inside it. Among the impacts of fouling is the reduction in the effectiveness of heat transfer, the increase in fuel consumption, the increase in CO2 emissions, the increase in maintenance costs, and the decrease in the profit margin of process. An appropriate cleaning program of the surface of the heat exchanger network is necessary to preserve its key performance parameters, preferably close to design values. This paper presents the maintenance method centered on energy efficiency, to plan the intervention of the preheating train equipment maintenance, which considers the economic energy improvement and the cost of the type of maintenance. The method requires the calculation of the fouling evolution from which the global heat transfer coefficient is obtained, and the heat flux is determined as a function of time. It was observed that, as time passes, the resistance provided by fouling increases and that the overall heat transfer coefficient decreases. The energy efficiency centered maintenance has an indicator of economic justification (factor J) that relates the economic-energy improvement achieved when performing maintenance, taking into account the economic effort invested. Depending on the cost of the type of maintenance to be performed, a threshold should be chosen, from which the maintenance activity is justified. The effectiveness values of the heat exchanger (e) and the J indicator are used to form a criticality matrix, which allows prioritizing maintenance activities in each equipment. The planning of the implementation dates of the maintenance of each heat exchanger, from the maintenance method centered on energy efficiency applied to the crude distillation unit's, preheat train, constitutes a contribution in this specific field. The conceptual design of the maintenance method centered on energy efficiency presented in this work is feasible for other heat transfer equipment used in oil refineries and industry in general. The procedure developed uses real operation values, and with its implementation, a saving of 150000 US dollars was achieved. © 2020 ASME. | spa |
dc.format.extent | 12 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) | spa |
dc.title | Efficiency Centered Maintenance of Preheat Train of a Crude Oil Distillation Unit | spa |
dcterms.bibliographicCitation | Coletti, F., Macchietto, S. A heat exchanger model to increase energy efficiency in refinery pre heat trains (2009) Computer Aided Chemical Engineering, 26, pp. 1245-1250. Cited 16 times. ISBN: 978-044453433-0 doi: 10.1016/S1570-7946(09)70207-X | spa |
dcterms.bibliographicCitation | Chebeir, J., Webb, Z.T., Romagnoli, J.A. An environment for topology analysis and data reconciliation of the pre-heat train in an industrial refinery (2019) Applied Thermal Engineering, 147, pp. 623-635. Cited 9 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2018.10.081 | spa |
dcterms.bibliographicCitation | Negrão, C.O.R., Tonin, P.C., Madi, M. Supervision of the thermal performance of heat exchanger trains (2007) Applied Thermal Engineering, 27 (2-3), pp. 347-357. Cited 12 times. doi: 10.1016/j.applthermaleng.2006.07.025 | spa |
dcterms.bibliographicCitation | Deshannavar, U.B., Ramasamy, M. A model to determine maximum heat flux under forced convective heat transfer regime for crude oil fouling studies (2019) Applied Thermal Engineering, 156, pp. 485-493. Cited 10 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2019.04.091 | spa |
dcterms.bibliographicCitation | Ochoa-Estopier, L.M., Jobson, M., Chen, L. Area-based optimization approach for refinery heat exchanger networks (2018) Applied Thermal Engineering, 129, pp. 606-617. Cited 11 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2017.10.049 | spa |
dcterms.bibliographicCitation | Loyola-Fuentes, J., Smith, R. Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition (2019) Energy, 183, pp. 368-384. Cited 22 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2019.06.119 | spa |
dcterms.bibliographicCitation | Coletti, F., Macchietto, S. A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling (2011) Industrial and Engineering Chemistry Research, 50 (8), pp. 4515-4533. Cited 89 times. http://pubs.acs.org/journal/iecred doi: 10.1021/ie901991g | spa |
dcterms.bibliographicCitation | Behranvand, E., Mozdianfard, M.R., Diaz-Bejarano, E., Coletti, F., Orzlowski, P., Macchietto, S. A comprehensive investigation of refinery preheaters foulant samples originated by heavy crude oil fractions as heating fluids (2018) Fuel, 224, pp. 529-536. Cited 8 times. http://www.journals.elsevier.com/fuel/ doi: 10.1016/j.fuel.2018.03.077 | spa |
dcterms.bibliographicCitation | Diaz-Bejarano, E., Coletti, F., Macchietto, S. Modeling and Prediction of Shell-Side Fouling in Shell-and-Tube Heat Exchangers (2018) Heat Transfer Engineering, 1, pp. 1-16. Cited 3 times. | spa |
dcterms.bibliographicCitation | Wang, F.-L., He, Y.-L., Tong, Z.-X., Tang, S.-Z. Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems (2017) International Journal of Heat and Mass Transfer, 104, pp. 774-786. Cited 84 times. http://www.journals.elsevier.com/international-journal-of-heat-and-mass-transfer/ doi: 10.1016/j.ijheatmasstransfer.2016.08.112 | spa |
dcterms.bibliographicCitation | Coletti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks; a thermo- hydraulic based analysis (2010) Computer Aided Chemical Engineering, 28 (C), pp. 19-24. Cited 11 times. http://www.elsevier.com/wps/find/bookdescription.cws_home/BS_CCE/description#description doi: 10.1016/S1570-7946(10)28004-5 | spa |
dcterms.bibliographicCitation | Wang, Y., Zhan, S., Feng, X. Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure (2015) Energy, 93, pp. 1478-1488. Cited 15 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2015.09.130 | spa |
dcterms.bibliographicCitation | Tian, J., Wang, Y., Feng, X. Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks (2016) Energy, 109, pp. 1118-1129. Cited 36 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.05.053 | spa |
dcterms.bibliographicCitation | Ishiyama, E.M., Heins, A.V., Paterson, W.R., Spinelli, L., Wilson, D.I. Scheduling cleaning in a crude oil preheat train subject to fouling: Incorporating desalter control (2010) Applied Thermal Engineering, 30 (13), pp. 1852-1862. Cited 64 times. doi: 10.1016/j.applthermaleng.2010.04.027 | spa |
dcterms.bibliographicCitation | Smith, R., Loyola-Fuentes, J., Jobson, M. Fouling in heat exchanger networks (2017) Chemical Engineering Transactions, 61, pp. 1789-1794. Cited 11 times. http://www.aidic.it/cet/ doi: 10.3303/CET1761296 | spa |
dcterms.bibliographicCitation | Schlunder, E. U., Transfer, I. C. f. H. a. M. (1983) Heat exchanger design handbook. Cited 678 times. Hemisphere Pub. Corp | spa |
dcterms.bibliographicCitation | Sekulic, y D. P. (2003) Fundamentals of heat exchanger design. Cited 2344 times. Shah R. K. (K). John Wiley & Sons | spa |
dcterms.bibliographicCitation | Kuppan, T. (2013) Heat exchanger design handbook. Cited 678 times. CRC Press | spa |
dcterms.bibliographicCitation | Incropera, F. P. (2007) Fundamentals of heat and mass transfer. Cited 22043 times. John Wiley | spa |
dcterms.bibliographicCitation | Cengel, Y. A. (2003) Heat Transfer A practical Approach. Cited 3070 times. 2nd ed., Columbus, GA, USA: Mc-Graw Hill Education | spa |
dcterms.bibliographicCitation | Yeap, B.L., Wilson, D.I., Polley, G.T., Pugh, S.J. Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models (Open Access) (2004) Chemical Engineering Research and Design, 82 (1), pp. 53-71. Cited 159 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description doi: 10.1205/026387604772803070 | spa |
dcterms.bibliographicCitation | Waters, A. J., Akinradewo, C. G., Lamb, D. Fouling: Implementation of a Crude Preheat Train Performance Monitoring Application at the Irving Oil Refinery (2009) Int. Conf. Heat Exch. Fouling Clean. VIII, 2009, pp. 33-38. Cited 11 times. | spa |
dcterms.bibliographicCitation | Assis, B.C.G., Gonçalves, C.D.O., Liporace, F.S., Oliveira, S.G., Queiroz, E.M., Pessoa, F.L.P., Costa, A.L.H. Constrained thermohydraulic optimization of the flow rate distribution in crude preheat trains (2013) Chemical Engineering Research and Design, 91 (8), pp. 1517-1526. Cited 15 times. doi: 10.1016/j.cherd.2013.06.005 | spa |
dcterms.bibliographicCitation | Polley, G.T., Wilson, D.I., Yeap, B.L., Pugh, S.J. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains (2002) Applied Thermal Engineering, 22 (7), pp. 777-788. Cited 122 times. doi: 10.1016/S1359-4311(02)00023-6 | spa |
dcterms.bibliographicCitation | Tajudin, Z. B. (2015) Experiments, Modelling and Validation of Crude Oil Fouling on Large Scale Rig. Cited 3 times. PhD Thesis., London: Imperial College London | spa |
dcterms.bibliographicCitation | Kern, D., Seaton, R. A theoretical analysis of thermal surface fouling (1959) Br Chem Eng, 4, pp. 258-262. Cited 441 times. | spa |
dcterms.bibliographicCitation | Ludwig, E. E. (1997) Applied process design for chemical and petrochemical plants, 2. Cited 225 times. Third ed., Houston, TX. Gulf Professional Publishing | spa |
dcterms.bibliographicCitation | Sanaye, S., Niroomand, B. Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule (2007) Energy Conversion and Management, 48 (5), pp. 1450-1461. Cited 47 times. doi: 10.1016/j.enconman.2006.12.006 | spa |
dcterms.bibliographicCitation | Caputo, A.C., Pelagagge, P.M., Salini, P. Joint economic optimization of heat exchanger design and maintenance policy (Open Access) (2011) Applied Thermal Engineering, 31 (8-9), pp. 1381-1392. Cited 44 times. doi: 10.1016/j.applthermaleng.2010.12.033 | spa |
dcterms.bibliographicCitation | Izyan, Z. N., Noryani, M., Dayanasari, A. H., Shuhaimi, M. MINLP model for simultaneous scheduling and retrofit of refinery preheat train (2014) Int. J. Energy Environ, 5 (2), pp. 197-206. Cited 3 times. | spa |
dcterms.bibliographicCitation | (2007) Standard of the Tubular Exchanger Manufacturers Association. Cited 389 times. Tubular Exchanger Manufacturers Association Inc., Ninth Edition, Tarrytown, NY. Tubular Exchanger Manufacturers Association Inc | spa |
dcterms.bibliographicCitation | Biyanto, T.R., Ramasamy, M., Jameran, A.B., Fibrianto, H.Y. Thermal and hydraulic impacts consideration in refinery crude preheat train cleaning scheduling using recent stochastic optimization methods (2016) Applied Thermal Engineering, 108, pp. 1436-1450. Cited 22 times. http://www.journals.elsevier.com/applied-thermal-engineering/ doi: 10.1016/j.applthermaleng.2016.05.068 | spa |
dcterms.bibliographicCitation | Watkinson, A. (2003) Comparison of Crude Oil Fouling Using Two Different Probes, pp. 234-241. Cited 16 times. de Heat Exchanger Fouling and Cleaning: Fundamentals and Applications | spa |
dcterms.bibliographicCitation | Kern, D. Q. (1997) Process heat transfer. Cited 1213 times. Tate McGraw-Hill Publishing Company | spa |
dcterms.bibliographicCitation | aminski, D., Jensen, M. K. (2005) Introduction to thermal and fluids engineering. Cited 73 times. Danvers, MA. John Wiley & Sons Inc | spa |
dcterms.bibliographicCitation | González Fernández, F. J. (2004) Auditoría del mantenimiento e indicadores de gestión. Cited 4 times. 1st ed., Madrid, España: Fundación Confemetal | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1115/IMECE2020-23186 | |
dc.subject.keywords | Fouling; | spa |
dc.subject.keywords | Heat Exchangers; | spa |
dc.subject.keywords | Tube | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.