Mostrar el registro sencillo del ítem

dc.contributor.authorHoyos, Gabriel
dc.contributor.authorPuertas, Edwin
dc.contributor.authorVilla, Jose Luis
dc.contributor.authorMartinez-Santos, Juan Carlos
dc.date.accessioned2023-07-19T21:15:01Z
dc.date.available2023-07-19T21:15:01Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationHoyos, G., Puertas, E., Villa, J. L., & Martinez-Santos, J. C. (2022, November). Detection of broken bars in three-phase motors by using curve fits and classification algorithms. In 2022 IEEE ANDESCON (pp. 1-6). IEEE.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12176
dc.description.abstractSince they transform electrical energy into mechanical energy, three-phase induction motors are one of the main assets that companies have. Therefore, good monitoring of their conditions and diagnosing their faults is essential. In this article, we propose a curve fitting technique and classification algorithms for a current motor phase to detect broken bars inside the motor. The data set is in the IEEE database, where the data was acquired, simulating the conditions of healthy and broken bars by varying the load condition. The curve fitting technique gives me essential attributes such as the signal's amplitude, frequency, and phase shift, supported by the Fourier transform, which informs how the signal power is a function of frequency. Furthermore, we extracted attributes to train the classifiers, achieving 85% accuracy in classifying the number of broken bars within the engine. © 2022 IEEE.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022spa
dc.titleDetection of broken bars in three-phase motors by using curve fits and classification algorithmsspa
dcterms.bibliographicCitationChicco, D., Tötsch, N., Jurman, G. The matthews correlation coefficient (Mcc) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation (2021) BioData Mining, 14, art. no. 13, pp. 1-22. Cited 245 times. http://www.biodatamining.org/ doi: 10.1186/s13040-021-00244-zspa
dcterms.bibliographicCitationMartínez, D.G. Mantenimiento Prescriptivo a Partir de la Predicción de Eventos Anómalosspa
dcterms.bibliographicCitationGrandhi, R.T., Prakash, N.K. Machine-Learning Based Fault Diagnosis of Electrical Motors Using Acoustic Signals (2021) Data Intelligence and Cognitive Informatics., pp. 663-671. Cited 6 times. Springerspa
dcterms.bibliographicCitationGundewar, S., Kane, P., Andhare, A. Detection of broken rotor bar fault in an induction motor using convolution neural network (2022) Journal of Advanced Mechanical Design, Systems and Manufacturing, 16 (2), art. no. A2. Cited 3 times. https://www.jstage.jst.go.jp/article/jamdsm/16/2/16_2022jamdsm0020/_article/-char/en doi: 10.1299/jamdsm.2022jamdsm0020spa
dcterms.bibliographicCitationHalder, S., Bhat, S., Dora, B.K. Inverse thresholding to spectrogram for the detection of broken rotor bar in induction motor (2022) Measurement: Journal of the International Measurement Confederation, 198, art. no. 111400. Cited 5 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2022.111400spa
dcterms.bibliographicCitationKennedy, S. (2017) RxM: What Is Prescriptive Maintenance, and How Soon Will You Need It?. Cited 3 times.spa
dcterms.bibliographicCitationLee, C.-Y., Zhuo, G.-L. Effective rotor fault diagnosis model using multilayer signal analysis and hybrid genetic binary chicken swarm optimization (2021) Symmetry, 13 (3), art. no. 487. Cited 6 times. https://www.mdpi.com/2073-8994/13/3/487/pdf doi: 10.3390/sym13030487spa
dcterms.bibliographicCitationLiu, X., Yan, Y., Hu, K., Zhang, S., Li, H., Zhang, Z., Shi, T. Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition (2022) Energies, 15 (3), art. no. 1196. Cited 9 times. https://www.mdpi.com/1996-1073/15/3/1196/pdf doi: 10.3390/en15031196spa
dcterms.bibliographicCitationMaciejewski, N.A.R. Deteccão e Diagn Óstico de Defeitos No Regime Transitório de Motores de Inducão Baseado em Sistemas Inteligentes PhD thesis. Universidade de São Paulospa
dcterms.bibliographicCitationMoreno-Sandoval, L.G. Assembly of Polarity, Emotion and User Statistics for Detection of Fake Profiles (2020) CLEF (Working Notes).. Cited 3 times.spa
dcterms.bibliographicCitationPuertas, E., Martinez-Santos, J.C. (2021) Phonetic Detection for Hate Speech Spreaders on Twitter. Cited 3 times.spa
dcterms.bibliographicCitationPuertas, E., Moreno-Sandoval, L.G., Redondo, J., Alvarado-Valencia, J.A., Pomares-Quimbaya, A. Detection of Sociolinguistic Features in Digital Social Networks for the Detection of Communities (Open Access) (2021) Cognitive Computation, 13 (2), pp. 518-537. Cited 4 times. http://www.springer.com/biomed/neuroscience/journal/12559 doi: 10.1007/s12559-021-09818-9spa
dcterms.bibliographicCitationRácz, A., Bajusz, D., Héberger, K. Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics (Open Access) (2019) Molecules (Basel, Switzerland), 24 (15). Cited 45 times. doi: 10.3390/molecules24152811spa
dcterms.bibliographicCitationRefaeilzadeh, P., Tang, L., Liu, H. Crossvalidation (2009) Encyclopedia of Database Systems, 5, pp. 532-538. Cited 1602 times.spa
dcterms.bibliographicCitationTreml, A.E. Experimental database for detecting and diagnosing rotor broken bar in a threephase induction motor (2020) IEEE DataPort. Cited 11 times.spa
dcterms.bibliographicCitationYepez, E.C. (2021) Detección de Barras Rotas en Motores de Inducción Utilizando Análisis de Entropía de la Información en Señales de Corrientespa
dcterms.bibliographicCitationYin, M., Vaughan, J.W., Wallach, H. Understanding the effect of accuracy on trust in machine learning models (2019) Conference on Human Factors in Computing Systems - Proceedings. Cited 183 times. ISBN: 978-145035970-2 doi: 10.1145/3290605.3300509spa
dcterms.bibliographicCitationZhang, P., Du, Y., Habetler, T.G., Lu, B. A survey of condition monitoring and protection methods for medium-voltage induction motors (2011) IEEE Transactions on Industry Applications, 47 (1), art. no. 5620974, pp. 34-46. Cited 550 times. doi: 10.1109/TIA.2010.2090839spa
dcterms.bibliographicCitationZhang, X., Zhang, T., Young, A.A., Li, X. Applications and comparisons of four time series models in epidemiological surveillance data (Open Access) (2014) PLoS ONE, 9 (2), art. no. e88075. Cited 106 times. http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0088075&representation=PDF doi: 10.1371/journal.pone.0088075spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/ANDESCON56260.2022.9989583
dc.subject.keywordsInduction Motors;spa
dc.subject.keywordsFault Detection;spa
dc.subject.keywordsStatorsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.