Mostrar el registro sencillo del ítem

dc.contributor.authorRios, Y. Yuliana
dc.contributor.authorGarcía-Rodríguez, J.A
dc.contributor.authorSanchez, Edgar N.
dc.contributor.authorAlanis, Alma Y.
dc.contributor.authorRuiz-Velázquez, E.
dc.contributor.authorPardo Garcia, Aldo
dc.date.accessioned2023-07-19T21:13:05Z
dc.date.available2023-07-19T21:13:05Z
dc.date.issued2022-07
dc.date.submitted2023-07
dc.identifier.citationYuliana Rios, Y., García-Rodríguez, J. A., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., & Garcia, A. P. (2022). Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Transactions, 126. https://doi.org/10.1016/j.isatra.2021.07.045spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12172
dc.description.abstractDiabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications. This contribution is related to a feedback control strategy for blood glucose management in population samples of ten virtual adult subjects, adolescents and children. This scheme focuses on the development of an inverse optimal control (IOC) proposal which is integrated by neural identification, a multi-step prediction (MSP) strategy, and Takagi–Sugeno (T–S) fuzzy inference to shape the convenient insulin infusion in the treatment of T1DM patients. The MSP makes it possible to estimate the glucose dynamics 15 min in advance; therefore, this estimation allows the Neuro-Fuzzy-IOC (NF-IOC) controller to react in advance to prevent hypoglycemic and hyperglycemic events. The T–S fuzzy membership functions are defined in such a way that the respective inferences change basal infusion rates for each patient's condition. The results achieved for scenarios simulated in Uva/Padova virtual software illustrate that this proposal is suitable to maintain blood glucose levels within normoglycemic values (70–115 mg/dL); furthermore, this level remains less than 250 mg/dL during the postprandial event. A comparison between a simple neural IOC (NIOC) and the proposed NF-IOC is carried out using the analysis for control variability named CVGA chart included in the Uva/Padova software. This analysis highlights the improvement of the NF-IOC treatment, proposed in this article, on the NIOC approach because each subject is located inside safe zones for the entire duration of the simulationspa
dc.format.extent10 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceISA Transactions - Vol. 126spa
dc.titleTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step predictionspa
dcterms.bibliographicCitationThe Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus (1993) New England Journal of Medicine, 329 (14), pp. 977-986. Cited 23013 times. doi: 10.1056/NEJM199309303291401spa
dcterms.bibliographicCitationTurner, R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) (1998) Lancet, 352 (9131), pp. 837-853. Cited 19212 times. http://www.journals.elsevier.com/the-lancet/ doi: 10.1016/S0140-6736(98)07019-6spa
dcterms.bibliographicCitationDeFronzo, R., Ferrannini, E., Alberti, K., Zimmet, P. The classification and diagnosis of diabetes mellitus (2015) International textbook of diabetes mellitus, pp. 24-30. Sons J.W.&. 4th ed. John Wiley & Sons New Jersey, Middle Atlantic, U.S. [Ch. 1]spa
dcterms.bibliographicCitationDeFronzo, R.A. Epidemiology and risk factors for type 1 diabetes mellitus (2015) International textbook of diabetes mellitus, pp. 17-28. Sons J.W.&. 4th ed. John Wiley & Sons Oxford, U.K. [Ch. 2]spa
dcterms.bibliographicCitationMajithia, A.R., Wiltschko, A.B., Zheng, H., Walford, G.A., Nathan, D.M. Rate of Change of Premeal Glucose Measured by Continuous Glucose Monitoring Predicts Postmeal Glycemic Excursions in Patients With Type 1 Diabetes: Implications for Therapy (2018) Journal of Diabetes Science and Technology, 12 (1), pp. 76-82. Cited 5 times. http://dst.sagepub.com/content/by/year doi: 10.1177/1932296817725756spa
dcterms.bibliographicCitationHovorka, R. Continuous glucose monitoring and closed-loop systems (2006) Diabetic Medicine, 23 (1), pp. 1-12. Cited 357 times. doi: 10.1111/j.1464-5491.2005.01672.xspa
dcterms.bibliographicCitationKux, L. Guidance for industry and food and drug administration staff; the content of investigational device exemption and premarket approval applications for artificial pancreas device systems; availability (2012) Fed Regist, 77 (226), pp. 1-63. Cited 3 times.spa
dcterms.bibliographicCitationMessori, M., Paolo Incremona, G., Cobelli, C., Magni, L. Individualized model predictive control for the artificial pancreas: In silico evaluation of closed-loop glucose control (2018) IEEE Control Systems, 38 (1), art. no. 8263475, pp. 86-104. Cited 63 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766314spa
dcterms.bibliographicCitationMagni, L., Forgione, M., Toffanin, C., Dalla Man, C., Kovatchev, B., De Nicolao, G., Cobelli, C. Run-to-run tuning of model predictive control for type 1 diabetes subjects: In silico trial (2009) Journal of Diabetes Science and Technology, 3 (5), pp. 1091-1098. Cited 87 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680900300512spa
dcterms.bibliographicCitationMessori, M., Ellis, M., Cobelli, C., Christofides, P.D., Magni, L. Improved postprandial glucose control with a customized Model Predictive Controller (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7172136, pp. 5108-5115. Cited 24 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7172136spa
dcterms.bibliographicCitationGondhalekar, R., Dassau, E., Doyle, F.J. Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7170967, pp. 1635-1640. Cited 14 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7170967spa
dcterms.bibliographicCitationOrtmann, L., Shi, D., Dassau, E., Doyle, F.J., Leonhardt, S., Misgeld, B.J.E. Gaussian process-based model predictive control of blood glucose for patients with type 1 diabetes mellitus (2018) 2017 Asian Control Conference, ASCC 2017, 2018-January, pp. 1092-1097. Cited 16 times. ISBN: 978-150901573-3 doi: 10.1109/ASCC.2017.8287323spa
dcterms.bibliographicCitationResalat, N., Youssef, J.E., Reddy, R., Jacobs, P.G. Design of a dual-hormone model predictive control for artificial pancreas with exercise model (2016) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016-October, art. no. 7591182, pp. 2270-2273. Cited 20 times. ISBN: 978-145770220-4 doi: 10.1109/EMBC.2016.7591182spa
dcterms.bibliographicCitationTang, F., Wang, Y. Design of Bi-hormonal artificial pancreas system using switching economic model predictive control (2017) Chinese Control Conference, CCC, art. no. 8028078, pp. 4579-4584. Cited 3 times. http://ieeexplore.ieee.org// ISBN: 978-988156393-4 doi: 10.23919/ChiCC.2017.8028078spa
dcterms.bibliographicCitationWang, Q., Xie, J., Molenaar, P., Ulbrecht, J. Model predictive control for type 1 diabetes based on personalized linear time-varying subject model consisting of both insulin and meal inputs: In Silico evaluation (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7172245, pp. 5782-5787. Cited 6 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7172245spa
dcterms.bibliographicCitationColmegna, P., Sánchez-Peña, R.S., Gondhalekar, R. Control-oriented linear parameter-varying model for glucose control in type 1 diabetes (2016) 2016 IEEE Conference on Control Applications, CCA 2016, art. no. 7587865, pp. 410-415. Cited 10 times. ISBN: 978-150900755-4 doi: 10.1109/CCA.2016.7587865spa
dcterms.bibliographicCitationPatek, S.D., Magni, L., Dassau, E., Hughes-Karvetski, C., Toffanin, C., De Nicolao, G., Del Favero, S., (...), Kovatchev, B.P. Modular closed-loop control of diabetes (Open Access) (2012) IEEE Transactions on Biomedical Engineering, 59 (11 PART1), art. no. 6177651, pp. 2986-2999. Cited 141 times. doi: 10.1109/TBME.2012.2192930spa
dcterms.bibliographicCitationGaladanci, J., Shafik, R.A., Mathew, J., Acharyya, A., Pradhan, D.K. A closed-loop control strategy for glucose control in artificial pancreas systems (2012) Proceedings - 2012 International Symposium on Electronic System Design, ISED 2012, art. no. 6526604, pp. 295-299. Cited 6 times. ISBN: 978-076954902-6 doi: 10.1109/ISED.2012.76spa
dcterms.bibliographicCitationKovacs, L., Szalay, P., Benyo, B., Chase, G.J. Asymptotic output tracking in blood glucose control. A case study (2011) Proceedings of the IEEE Conference on Decision and Control, art. no. 6161400, pp. 59-64. Cited 7 times. ISBN: 978-161284800-6 doi: 10.1109/CDC.2011.6161400spa
dcterms.bibliographicCitationLeon, B.S., Alanis, A.Y., Sanchez, E.N., Ornelas-Tellez, F., Ruiz-Velazquez, E. Neural inverse optimal control applied to type 1 diabetes mellitus patients (Open Access) (2013) Analog Integrated Circuits and Signal Processing, 76 (3), pp. 343-352. Cited 7 times. doi: 10.1007/s10470-013-0109-8spa
dcterms.bibliographicCitationRios, Y.Y., García-Rodríguez, J.A., Sánchez, O.D., Sanchez, E.N., Alanis, A.Y., Ruiz-Velázquez, E., Arana-Daniel, N. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment (2018) Proceedings of the International Joint Conference on Neural Networks, 2018-July, art. no. 8489197. Cited 9 times. ISBN: 978-150906014-6 doi: 10.1109/IJCNN.2018.8489197spa
dcterms.bibliographicCitationKarahoca, A., Karahoca, D., Kara, A. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems (2009) ICSCCW 2009 - 5th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, art. no. 5379497. Cited 11 times. ISBN: 978-142443428-2 doi: 10.1109/ICSCCW.2009.5379497spa
dcterms.bibliographicCitationGeman, O., Chiuchisan, I., Toderean, R. Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction (Open Access) (2017) 2017 E-Health and Bioengineering Conference, EHB 2017, art. no. 7995505, pp. 639-642. Cited 30 times. ISBN: 978-153860358-1 doi: 10.1109/EHB.2017.7995505spa
dcterms.bibliographicCitationLekkas, S., Mikhailov, L. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases (Open Access) (2010) Artificial Intelligence in Medicine, 50 (2), pp. 117-126. Cited 76 times. doi: 10.1016/j.artmed.2010.05.007spa
dcterms.bibliographicCitationNath, A., Dey, R., Balas, V.E. Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control (2018) Advances in Intelligent Systems and Computing, 634, pp. 286-296. Cited 10 times. http://www.springer.com/series/11156 ISBN: 978-331962523-2 doi: 10.1007/978-3-319-62524-9_23spa
dcterms.bibliographicCitationAlanis, A.Y., Sanchez, E.N., Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order neural networks (2007) IEEE Transactions on Neural Networks, 18 (4), pp. 1185-1195. Cited 151 times. doi: 10.1109/TNN.2007.899170spa
dcterms.bibliographicCitationQuintero-Manriquez, E., Sanchez, E.N., Harley, R.G., Li, S., Felix, R.A. Neural Sliding Mode Control for Induction Motors Using Rapid Control Prototyping (Open Access) (2017) IFAC-PapersOnLine, 50 (1), pp. 9625-9630. Cited 8 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2017.08.1711spa
dcterms.bibliographicCitationRovithakis, G.A., Christodoulou, M.A. Adaptive control with recurrent high-order neural networks: Theory and industrial applications (2000) , p. 196. Cited 340 times. Springer London, U.K.spa
dcterms.bibliographicCitationSanchez, E.N., Alanis, A.Y., Loukianov, A.G. Discrete-time high order neural control: trained with Kalman filtering, vol. 112 (2008) , p. 116. Cited 156 times. Springer Science & Business Media Berlin, Germanyspa
dcterms.bibliographicCitationSanchez, E.N., Ornelas-Tellez, F. Discrete-time inverse optimal control for nonlinear systems (Open Access) (2017) Discrete-Time Inverse Optimal Control for Nonlinear Systems, pp. 1-232. Cited 38 times. http://www.tandfebooks.com/doi/book/10.1201/b14779 ISBN: 978-146658088-6; 978-146658087-9 doi: 10.1201/b14779spa
dcterms.bibliographicCitationLi, W., Todorov, E., Liu, D. Inverse optimality design for biological movement systems (2011) IFAC Proceedings Volumes (IFAC-PapersOnline), 44 (1 PART 1), pp. 9662-9667. Cited 25 times. http://www.ifac-papersonline.net/browser?browse=c ISBN: 978-390266193-7 doi: 10.3182/20110828-6-IT-1002.00877spa
dcterms.bibliographicCitationFreeman, R.A., Kokotović, P. Robust nonlinear control design (2009) , p. 255. Cited 1040 times. Birkhäuser Boston, Massachusetts, U.S.spa
dcterms.bibliographicCitationOrnelas, F., Sanchez, E.N., Loukianov, A.G. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach (Open Access) (2011) Proceedings of the IEEE International Conference on Control Applications, art. no. 6044461, pp. 1431-1436. Cited 33 times. ISBN: 978-145771062-9 doi: 10.1109/CCA.2011.6044461spa
dcterms.bibliographicCitationOrnelas-Tellez, F., Sanchez, E.N., Loukianov, A.G., Navarro-Lopez, E.M. Speed-gradient inverse optimal control for discrete-time nonlinear systems (Open Access) (2011) Proceedings of the IEEE Conference on Decision and Control, art. no. 6160374, pp. 290-295. Cited 27 times. ISBN: 978-161284800-6 doi: 10.1109/CDC.2011.6160374spa
dcterms.bibliographicCitationKirk, D.E. Optimal control theory: an introduction (1970) , p. 564. Cited 2944 times. springer-v ed. Prentice-Hall Englewood Cliffs, New Jersey, U.S.spa
dcterms.bibliographicCitationBasar, T., Olsder, G.J. Dynamic noncooperative game theory (1999) , p. 526. Cited 3437 times. 2nd ed. Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania, U.S.spa
dcterms.bibliographicCitationOhsawa, T., Bloch, A.M., Leok, M. Discrete Hamilton-Jacobi theory and discrete optimal control (Open Access) (2010) Proceedings of the IEEE Conference on Decision and Control, art. no. 5717665, pp. 5438-5443. Cited 39 times. ISBN: 978-142447745-6 doi: 10.1109/CDC.2010.5717665spa
dcterms.bibliographicCitationAl-Tamimi, A., Lewis, F.L., Abu-Khalaf, M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof (Open Access) (2008) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (4), pp. 943-949. Cited 820 times. doi: 10.1109/TSMCB.2008.926614spa
dcterms.bibliographicCitationKovatchev, B.P., Breton, M., Dalla Man, C., Cobelli, C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes (Open Access) (2009) Journal of Diabetes Science and Technology, 3 (1), pp. 44-55. Cited 595 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680900300106spa
dcterms.bibliographicCitationDalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New features (Open Access) (2014) Journal of Diabetes Science and Technology, 8 (1), pp. 26-34. Cited 496 times. doi: 10.1177/1932296813514502spa
dcterms.bibliographicCitationChang, F.-J., Chiang, Y.-M., Chang, L.-C. Multi-step-ahead neural networks for flood forecasting (2007) Hydrological Sciences Journal, 52 (1), pp. 114-130. Cited 115 times. doi: 10.1623/hysj.52.1.114spa
dcterms.bibliographicCitationTakagi, T., Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control (1985) IEEE Transactions on Systems, Man and Cybernetics, SMC-15 (1), pp. 116-132. Cited 16605 times. doi: 10.1109/TSMC.1985.6313399spa
dcterms.bibliographicCitationLopes Souto, D., Lopes Rosado, E. Use of carb counting in the dietary treatment of diabetes mellitus (Open Access) (2010) Nutricion Hospitalaria, 25 (1), pp. 18-25. Cited 17 times. http://www.nutricionhospitalaria.com/mostrarfile.asp?ID=4324 doi: 10.3305/nh.2010.25.1.4324spa
dcterms.bibliographicCitationInstitute of Medicine, D. Summary tables, dietary reference intakes (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids, pp. 1319-1331. Cited 35 times. Elsevier Washington, D.C., U.S. [Ch. Summary Ta]spa
dcterms.bibliographicCitationPreviato, H.D.R.D.A. Carbohydrate counting in diabetes (2016) Nutr Food Technol: Open Access, 2 (2), pp. 1-4. Cited 2 times.spa
dcterms.bibliographicCitationNutrition recommendations and interventions for diabetes: A position statement of the American Diabetes Association (2008) Diabetes Care, 31 (SUPPL. 1), pp. S61-S78. Cited 1291 times. http://care.diabetesjournals.org/cgi/reprint/31/Supplement_1/S61 doi: 10.2337/dc08-S061spa
dcterms.bibliographicCitationAssociation, A.D. All about carbohydrate counting (2009) . Cited 4 times. American Diabetes Association URL https://professional.diabetes.org/sites/professional.diabetes.org/files/media/All_About_Carbohydrate_Counting.pdfspa
dcterms.bibliographicCitationCinar, A. Artificial Pancreas Systems: An Introduction to the Special Issue (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263484, pp. 26-29. Cited 31 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766321spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1016/j.isatra.2021.07.045
dc.subject.keywordsRecurrent neural networkspa
dc.subject.keywordsFuzzy inferencespa
dc.subject.keywordsUva/Padova simulatorspa
dc.subject.keywordsNeural multi-step predictorspa
dc.subject.keywordsType 1 Diabetes Mellitusspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.