Mostrar el registro sencillo del ítem

dc.contributor.authorLiu, Kuang-Sheng
dc.contributor.authorMuda, Iskandar
dc.contributor.authorLin, Ming-Hung
dc.contributor.authorDwijendra, Ngakan Ketut Acwin
dc.contributor.authorCaballero, Gaylord Carrillo
dc.contributor.authorAlviz-Meza, Aníbal
dc.contributor.authorCárdenas-Escrocia, Yulineth
dc.date.accessioned2023-07-19T21:12:04Z
dc.date.available2023-07-19T21:12:04Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationLiu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia. 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" Sustainability 15, no. 2: 1728. https://doi.org/10.3390/su15021728spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12171
dc.description.abstractThere are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate. © 2023 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.format.extent14 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAn Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Roomspa
dcterms.bibliographicCitationPilechiha, P., Mahdavinejad, M., Pour Rahimian, F., Carnemolla, P., Seyedzadeh, S. Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency (2020) Applied Energy, 261, art. no. 114356. Cited 100 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.114356spa
dcterms.bibliographicCitationSadick, A.-M., Kamardeen, I. Enhancing employees’ performance and well-being with nature exposure embedded office workplace design (2020) Journal of Building Engineering, 32, art. no. 101789. Cited 21 times. http://www.journals.elsevier.com/journal-of-building-engineering/ doi: 10.1016/j.jobe.2020.101789spa
dcterms.bibliographicCitationAnand, P., Cheong, D., Sekhar, C., Santamouris, M., Kondepudi, S. Energy saving estimation for plug and lighting load using occupancy analysis (2019) Renewable Energy, 143, pp. 1143-1161. Cited 44 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2019.05.089spa
dcterms.bibliographicCitationAhmadi, M.H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M., Kumar, R., Naeimi, A., Ming, T. Solar power technology for electricity generation: A critical review (2018) Energy Science and Engineering, 6 (5), pp. 340-361. Cited 218 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0505http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0505 doi: 10.1002/ese3.239spa
dcterms.bibliographicCitationAzizi, H., Nejatian, N. Evaluation of the climate change impact on the intensity and return period for drought indices of SPI and SPEI (study area: Varamin plain) (2022) Water Supply, 22 (4), pp. 4373-4386. Cited 13 times. https://watermark.silverchair.com/ws022044373.pdf? doi: 10.2166/ws.2022.056spa
dcterms.bibliographicCitationYavari, F., Salehi Neyshabouri, S.A., Yazdi, J., Molajou, A., Brysiewicz, A. A Novel Framework for Urban Flood damage Assessment (Open Access) (2022) Water Resources Management, 36 (6), pp. 1991-2011. Cited 14 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-022-03122-3spa
dcterms.bibliographicCitationKarimi, G., Moradi, Y. Buffer insertion for delay minimization in RLC interconnects using cuckoo optimization algorithm (Open Access) (2019) Analog Integrated Circuits and Signal Processing, 99 (1), pp. 111-121. Cited 6 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=3c35ad1151604369b8fc57d35afe8871&referrer=parent&backto=linkingpublicationresults,1:100232,1 doi: 10.1007/s10470-018-1318-yspa
dcterms.bibliographicCitationOmrani, M.M.T. Economic and Environmental Analysis of Floating Photovoltaic Techno-Economic and Environmental Analysis of Floating Photovoltaic Power Plants: A Case Study of Iran Renew. Energy Res. Appl., 2022 (4), pp. 41-54. Cited 2 times.spa
dcterms.bibliographicCitationJalali, Z., Noorzai, E., Heidari, S. Design and optimization of form and facade of an office building using the genetic algorithm (2020) Science and Technology for the Built Environment, 26 (2), pp. 128-140. Cited 52 times. http://www.tandfonline.com/loi/uhvc21 doi: 10.1080/23744731.2019.1624095spa
dcterms.bibliographicCitationO'Brien, W., Wagner, A., Schweiker, M., Mahdavi, A., Day, J., Kjærgaard, M.B., Carlucci, S., (...), Berger, C. Introducing IEA EBC annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation (2020) Building and Environment, 178, art. no. 106738. Cited 130 times. http://www.elsevier.com/inca/publications/store/2/9/6/index.htt doi: 10.1016/j.buildenv.2020.106738spa
dcterms.bibliographicCitationElsheikh, A.H., Shanmugan, S., Sathyamurthy, R., Kumar Thakur, A., Issa, M., Panchal, H., Muthuramalingam, T., (...), Sharifpur, M. Low-cost bilayered structure for improving the performance of solar stills: Performance/cost analysis and water yield prediction using machine learning (2022) Sustainable Energy Technologies and Assessments, 49, art. no. 101783. Cited 56 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2021.101783spa
dcterms.bibliographicCitationAhmadi, M.H., Baghban, A., Salwana, E., Sadeghzadeh, M., Zamen, M., Shamshirband, S., Kumar, R. (2019) Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors. Cited 6 times. Preprintsspa
dcterms.bibliographicCitationSabbagh, O., Fanaei, M.A., Arjomand, A., Hossein Ahmadi, M. Multi-objective optimization assessment of a new integrated scheme for co-production of natural gas liquids and liquefied natural gas (2021) Sustainable Energy Technologies and Assessments, 47, art. no. 101493. Cited 12 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2021.101493spa
dcterms.bibliographicCitationGielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., Gorini, R. The role of renewable energy in the global energy transformation (2019) Energy Strategy Reviews, 24, pp. 38-50. Cited 1824 times. http://www.journals.elsevier.com/energy-strategy-reviews/ doi: 10.1016/j.esr.2019.01.006spa
dcterms.bibliographicCitationAhmadi, M.H., Açıkkalp, E. Exergetic Dimensions of Energy Systems and Processes (2021) J. Therm. Anal. Calorim., 145, pp. 631-634. Cited 3 times.spa
dcterms.bibliographicCitationLowitzsch, J., Hoicka, C.E., van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future? (2020) Renewable and Sustainable Energy Reviews, 122, art. no. 109489. Cited 210 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.109489spa
dcterms.bibliographicCitationFessler, D.C. (2018) The Energy Disruption Triangle: Three Sectors that Will Change How We Generate, Use, and Store Energy. Cited 2 times. Wiley: Hoboken, NJ, USA, ISBN 9781119347132spa
dcterms.bibliographicCitationLi, Q., Loy-Benitez, J., Nam, K., Hwangbo, S., Rashidi, J., Yoo, C. Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks (2019) Energy, 178, pp. 277-292. Cited 64 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2019.04.114spa
dcterms.bibliographicCitationSudharshan, K., Naveen, C., Vishnuram, P., Krishna Rao Kasagani, D.V.S., Nastasi, B. Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction (2022) Energies, 15 (17), art. no. 6267. Cited 10 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176267spa
dcterms.bibliographicCitationDavoodi, A., Abbasi, A.R., Nejatian, S. Multi-objective techno-economic generation expansion planning to increase the penetration of distributed generation resources based on demand response algorithms (2022) International Journal of Electrical Power and Energy Systems, 138, art. no. 107923. Cited 14 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107923spa
dcterms.bibliographicCitationDagoumas, A.S., Koltsaklis, N.E. Review of models for integrating renewable energy in the generation expansion planning (Open Access) (2019) Applied Energy, 242, pp. 1573-1587. Cited 132 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2019.03.194spa
dcterms.bibliographicCitationTaherkhani, M., Hosseini, S.H., Javadi, M.S., Catalão, J.P.S. Scenario-based probabilistic multi-stage optimization for transmission expansion planning incorporating wind generation integration (2020) Electric Power Systems Research, 189, art. no. 106601. Cited 17 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106601spa
dcterms.bibliographicCitationPokhrel, S., Amiri, L., Zueter, A., Poncet, S., Hassani, F.P., Sasmito, A.P., Ghoreishi-Madiseh, S.A. Thermal performance evaluation of integrated solar-geothermal system; a semi-conjugate reduced order numerical model (Open Access) (2021) Applied Energy, 303, art. no. 117676. Cited 10 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2021.117676spa
dcterms.bibliographicCitationPaliwal, P., Webber, J.L., Mehbodniya, A., Haq, M.A., Kumar, A., Chaurasiya, P.K. Multi-agent-based approach for generation expansion planning in isolated micro-grid with renewable energy sources and battery storage (Open Access) (2022) Journal of Supercomputing, 78 (17), pp. 18497-18523. Cited 7 times. https://www.springer.com/journal/11227 doi: 10.1007/s11227-022-04609-xspa
dcterms.bibliographicCitationSweerts, B., Pfenninger, S., Yang, S., Folini, D., van der Zwaan, B., Wild, M. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data (2019) Nature Energy, 4 (8), pp. 657-663. Cited 71 times. www.nature.com/nenergy/ doi: 10.1038/s41560-019-0412-4spa
dcterms.bibliographicCitationAzimi, H., Bonakdari, H., Ebtehaj, I. Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed (2021) ISH Journal of Hydraulic Engineering, 27 (S1), pp. 77-87. Cited 13 times. www.tandfonline.com/tish doi: 10.1080/09715010.2019.1579058spa
dcterms.bibliographicCitationPirzadeh Ashraf, B., Mojtahedi, A., Dadashzadeh, M. Prediction of dissolved oxygen in wetlands using FCM-ANFIS model—A Case Study: Choghakhor Wetland J. Iran. Water Eng. Res., 2022 (2), pp. 33-50.spa
dcterms.bibliographicCitationHan, T., Ansari, N. Provisioning Green Energy for Base Stations in Heterogeneous Networks (2016) IEEE Transactions on Vehicular Technology, 65 (7), art. no. 7182373, pp. 5439-5448. Cited 27 times. doi: 10.1109/TVT.2015.2466101spa
dcterms.bibliographicCitationDrachal, K., Pawłowski, M. A review of the applications of genetic algorithms to forecasting prices of commodities (Open Access) (2021) Economies, 9 (1), art. no. 6. Cited 17 times. https://www.mdpi.com/2227-7099/9/1/6/pdf doi: 10.3390/economies9010006spa
dcterms.bibliographicCitationTijani, I.A., Zayed, T. Gene expression programming based mathematical modeling for leak detection of water distribution networks (Open Access) (2022) Measurement: Journal of the International Measurement Confederation, 188, art. no. 110611. Cited 9 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2021.110611spa
dcterms.bibliographicCitationMittal, H., Tripathi, A., Pandey, A.C., Pal, R. Gravitational search algorithm: a comprehensive analysis of recent variants (Open Access) (2021) Multimedia Tools and Applications, 80 (5), pp. 7581-7608. Cited 33 times. https://link.springer.com/journal/11042 doi: 10.1007/s11042-020-09831-4spa
dcterms.bibliographicCitationSabri, N.M., Puteh, M., Mahmood, M.R. An overview of Gravitational Search Algorithm utilization in optimization problems (Open Access) (2013) Proceedings - 2013 IEEE 3rd International Conference on System Engineering and Technology, ICSET 2013, art. no. 6650144, pp. 61-66. Cited 18 times. ISBN: 978-147991030-4 doi: 10.1109/ICSEngT.2013.6650144spa
dcterms.bibliographicCitationWang, Y., Gao, S., Yu, Y., Cai, Z., Wang, Z. A gravitational search algorithm with hierarchy and distributed framework (2021) Knowledge-Based Systems, 218, art. no. 106877. Cited 42 times. https://www.journals.elsevier.com/knowledge-based-systems doi: 10.1016/j.knosys.2021.106877spa
dcterms.bibliographicCitationRashedi, E., Rashedi, E., Nezamabadi-pour, H. A comprehensive survey on gravitational search algorithm (Open Access) (2018) Swarm and Evolutionary Computation, 41, pp. 141-158. Cited 155 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description doi: 10.1016/j.swevo.2018.02.018spa
dcterms.bibliographicCitationYounes, Z., Alhamrouni, I., Mekhilef, S., Reyasudin, M. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid (Open Access) (2021) Ain Shams Engineering Journal, 12 (2), pp. 1985-1994. Cited 47 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2020.10.021spa
dcterms.bibliographicCitationCampbell, J.E., Carmichael, G.R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D.R., Blake, N.J., (...), Stanier, C.O. Photosynthetic control of atmospheric carbonyl sulfide during the growing season (Open Access) (2008) Science, 322 (5904), pp. 1085-1088. Cited 158 times. doi: 10.1126/science.1164015spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/su15021728
dc.subject.keywordsElectric Power Transmission Networks;spa
dc.subject.keywordsOptimal Power Flow;spa
dc.subject.keywordsPower Systemspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.