Mostrar el registro sencillo del ítem

dc.contributor.authorZishan, Farhad
dc.contributor.authorMansouri, Saeedeh
dc.contributor.authorAbdollahpour
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2023-07-19T21:11:16Z
dc.date.available2023-07-19T21:11:16Z
dc.date.issued2023
dc.date.submitted2023
dc.identifier.citationZishan F, Mansouri S, Abdollahpour F, Grisales-Noreña LF, Montoya OD. Allocation of Renewable Energy Resources in Distribution Systems While considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithm. Energies. 2023; 16(1):474. https://doi.org/10.3390/en16010474spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12169
dc.description.abstractGiven the importance of renewable energy sources in distribution systems, this article addresses the problem of locating and determining the capacity of these sources, namely, wind turbines and solar panels. To solve this optimization problem, a new algorithm based on the behavior of salp is used. The objective functions include reducing losses, improving voltage profiles, and reducing the costs of renewable energy sources. In this method, the allocation of renewable resources is considered for different load models in distribution systems and different load levels using smart meters. Due to the fact that these objective functions are multi-objective, the fuzzy decision-making method is used to select the optimal solution from the set of Pareto solutions. The considered objective functions lead to loss reduction, voltage profile improvement, and RES cost reduction (A allocating RES resources optimally without resource limitations; B: allocating RES resources optimally with resource limitations). In addition, daily wind, solar radiation, and temperature data are taken into account. The proposed method is applied to the IEEE standard 33-bus system. The simulation results show the better performance of the multi-objective salp swarm algorithm (MSSA) at improving voltage profiles and reducing losses in distribution systems. Lastly, the optimal results of the MSSA algorithm are compared with the PSO and GA algorithms. © 2023 by the authors.spa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies Volume 16, Issue 1spa
dc.titleAllocation of Renewable Energy Resources in Distribution Systems While considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithmspa
dcterms.bibliographicCitationZhang, G., Jiang, C., Wang, X. Comprehensive review on structure and operation of virtual power plant in electrical system (2019) IET Generation, Transmission and Distribution, 13 (2), pp. 145-156. Cited 80 times. www.ietdl.org/IET-GTD doi: 10.1049/iet-gtd.2018.5880spa
dcterms.bibliographicCitationPupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., Pourkashanian, M. Large scale integration of renewable energy sources (RES) in the future Colombian energy system (2019) Energy, 186, art. no. 115805. Cited 50 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2019.07.135spa
dcterms.bibliographicCitationZhang, X., Lovati, M., Vigna, I., Widén, J., Han, M., Gal, C., Feng, T. A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions (2018) Applied Energy, 230, pp. 1034-1056. Cited 69 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2018.09.041spa
dcterms.bibliographicCitationGanjei, N., Zishan, F., Alayi, R., Samadi, H., Jahangiri, M., Kumar, R., Mohammadian, A. Designing and Sensitivity Analysis of an Off-Grid Hybrid Wind-Solar Power Plant with Diesel Generator and Battery Backup for the Rural Area in Iran (2022) Journal of Engineering (United Kingdom), 2022, art. no. 4966761. Cited 16 times. www.hindawi.com/journals/je/ doi: 10.1155/2022/4966761spa
dcterms.bibliographicCitationTzen, E., Morris, R. Renewable energy sources for desalination (2003) Solar Energy, 75 (5), pp. 375-379. Cited 132 times. www.elsevier.com/inca/publications/store/3/2/9/index.htt doi: 10.1016/j.solener.2003.07.010spa
dcterms.bibliographicCitationGbadamosi, S.L., Nwulu, N.I. Optimal planning of renewable energy systems for power loss reduction in transmission expansion planning (2020) Journal of Engineering, Design and Technology, 18 (5), pp. 1209-1222. Cited 15 times. http://www.emeraldinsight.com/info/journals/jedt/jedt.jsp doi: 10.1108/JEDT-11-2019-0291spa
dcterms.bibliographicCitationTightiz, L., Yang, H. Resilience Microgrid as Power System Integrity Protection Scheme Element with Reinforcement Learning Based Management (2021) IEEE Access, 9, art. no. 9448198, pp. 83963-83975. Cited 13 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2021.3087491spa
dcterms.bibliographicCitationNiu, M., Xu, N.Z., Kong, X., Ngin, H.T., Ge, Y.Y., Liu, J.S., Liu, Y.T. Reliability Importance of Renewable Energy Sources to Overall Generating Systems (2021) IEEE Access, 9, art. no. 9337879, pp. 20450-20459. Cited 11 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2021.3055354spa
dcterms.bibliographicCitationHadjidemetriou, L., Asprou, M., Demetriou, P., Kyriakides, E. Enhancing power system voltage stability through a centralized control of renewable energy sources (Open Access) (2015) 2015 IEEE Eindhoven PowerTech, PowerTech 2015, art. no. 7232671. Cited 7 times. ISBN: 978-147997693-5 doi: 10.1109/PTC.2015.7232671spa
dcterms.bibliographicCitationAkbari, E., Shafaghatian, N., Zishan, F., Montoya, O.D., Giral-Ramírez, D.A. Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations (2022) IEEE Access, 10, pp. 95824-95838. Cited 8 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2022.3203730spa
dcterms.bibliographicCitationHosseinzadeh, N., Aziz, A., Mahmud, A., Gargoom, A., Rabbani, M. Voltage stability of power systems with renewable-energy inverter-based generators: A review (Open Access) (2021) Electronics (Switzerland), 10 (2), art. no. 115, pp. 1-27. Cited 35 times. https://www.mdpi.com/2079-9292/10/2/115/pdf doi: 10.3390/electronics10020115spa
dcterms.bibliographicCitationSadeghi, B., Shafaghatian, N., Alayi, R., El Haj Assad, M., Zishan, F., Hosseinzadeh, H. Optimization of synchronized frequency and voltage control for a distributed generation system using the Black Widow Optimization algorithm (2022) Clean Energy, 6 (1), pp. 869-882. Cited 8 times. https://academic.oup.com/ce/pages/About doi: 10.1093/ce/zkab062spa
dcterms.bibliographicCitationUllah, Z., Mokryani, G., Campean, F., Hu, Y.F. Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources (2019) IET Energy Systems Integration, 1 (3), pp. 147-157. Cited 49 times. https://ietresearch.onlinelibrary.wiley.com/journal/25168401 doi: 10.1049/iet-esi.2018.0041spa
dcterms.bibliographicCitationMontoya, O.D., Zishan, F., Giral-Ramírez, D.A. Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks (2022) Mathematics, 10 (19), art. no. 3649. Cited 7 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math10193649spa
dcterms.bibliographicCitationZishan, F., Akbari, E., Montoya, O.D., Giral-Ramírez, D.A., Nivia-Vargas, A.M. Electricity retail market and accountability-based strategic bidding model with short-term energy storage considering the uncertainty of consumer demand response (2022) Results in Engineering, 16, art. no. 100679. Cited 5 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100679spa
dcterms.bibliographicCitationKumar, K., Babu, R.N., Prabhu, K.R. Design and analysis of RBFN-based single MPPT controller for hybrid solar and wind energy system (2017) IEEE Access, 5, art. no. 8004414, pp. 15308-15317. Cited 64 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2017.2733555spa
dcterms.bibliographicCitationDadjé, A., Djongyang, N., Kana, J.D., Tchinda, R. Maximum power point tracking methods for photovoltaic systems operating under partially shaded or rapidly variable insolation conditions: a review paper (2016) International Journal of Sustainable Engineering, 9 (4), pp. 224-239. Cited 16 times. http://www.tandf.co.uk/journals/titles/19397038.asp doi: 10.1080/19397038.2016.1149525spa
dcterms.bibliographicCitationYang, B., Yu, L., Chen, Y., Ye, H., Shao, R., Shu, H., Yu, T., (...), Sun, L. Modelling, applications, and evaluations of optimal sizing and placement of distributed generations: A critical state-of-the-art survey (Open Access) (2021) International Journal of Energy Research, 45 (3), pp. 3615-3642. Cited 33 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-114X doi: 10.1002/er.6104spa
dcterms.bibliographicCitationYang, B., Wang, J., Chen, Y., Li, D., Zeng, C., Chen, Y., Guo, Z., (...), Sun, L. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook (Open Access) (2020) Journal of Energy Storage, 32, art. no. 101814. Cited 52 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101814spa
dcterms.bibliographicCitationYang, B., Li, J., Shu, H., Cai, Z., Tang, B., Huang, X., Zhu, M. Recent advances of optimal sizing and location of charging stations: A critical overview (Open Access) (2022) International Journal of Energy Research, 46 (13), pp. 17899-17925. Cited 4 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-114X doi: 10.1002/er.8476spa
dcterms.bibliographicCitationYuan, Z., Wang, W., Wang, H., Yildizbasi, A. A new methodology for optimal location and sizing of battery energy storage system in distribution networks for loss reduction (Open Access) (2020) Journal of Energy Storage, 29, art. no. 101368. Cited 49 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101368spa
dcterms.bibliographicCitationKong, X., Wang, H., Li, N., Mu, H. Multi-objective optimal allocation and performance evaluation for energy storage in energy systems (Open Access) (2022) Energy, 253, art. no. 124061. Cited 7 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2022.124061spa
dcterms.bibliographicCitationTightiz, L., Yang, H., Bevrani, H. An interoperable communication framework for grid frequency regulation support from microgrids (Open Access) (2021) Sensors, 21 (13), art. no. 4555. Cited 8 times. https://www.mdpi.com/1424-8220/21/13/4555/pdf doi: 10.3390/s21134555spa
dcterms.bibliographicCitationAbd Elazim, S.M., Ali, E.S. Optimal network restructure via improved whale optimization approach (2021) International Journal of Communication Systems, 34 (1), art. no. e4617. Cited 33 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1131 doi: 10.1002/dac.4617spa
dcterms.bibliographicCitationAbd Elazim, S.M., Ali, E.S. Optimal locations and sizing of capacitors in radial distribution systems using mine blast algorithm (2018) Electrical Engineering, 100 (1), pp. 1-9. Cited 36 times. http://www.springer.com/engineering/electronics/journal/202 doi: 10.1007/s00202-016-0475-1spa
dcterms.bibliographicCitationAli, E.S., Abd Elazim, S.M., Abdelaziz, A.Y. Ant Lion Optimization Algorithm for renewable Distributed Generations (Open Access) (2016) Energy, Part 1 116, pp. 445-458. Cited 213 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.09.104spa
dcterms.bibliographicCitationTahir, M.F., Haoyong, C., Khan, A., Javed, M.S., Laraik, N.A., Mehmood, K. Optimizing size of variable renewable energy sources by incorporating energy storage and demand response (2019) IEEE Access, 7, art. no. 8764549, pp. 103115-103126. Cited 37 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2019.2929297spa
dcterms.bibliographicCitationBartolucci, L., Cordiner, S., Mulone, V., Rocco, V., Rossi, J.L. Hybrid renewable energy systems for renewable integration in microgrids: Influence of sizing on performance (2018) Energy, 152, pp. 744-758. Cited 60 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2018.03.165spa
dcterms.bibliographicCitationMoradi, M.H., Abedini, M., Tousi, S.M.R., Hosseinian, S.M. Optimal siting and sizing of renewable energy sources and charging stations simultaneously based on Differential Evolution algorithm (Open Access) (2015) International Journal of Electrical Power and Energy Systems, 73, pp. 1015-1024. Cited 112 times. doi: 10.1016/j.ijepes.2015.06.029spa
dcterms.bibliographicCitationMozafar, M.R., Moradi, M.H., Amini, M.H. A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved GA-PSO algorithm (Open Access) (2017) Sustainable Cities and Society, 32, pp. 627-637. Cited 190 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2017.05.007spa
dcterms.bibliographicCitationNiknam, T., Fard, A.K., Seifi, A. Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants (Open Access) (2012) Renewable Energy, 37 (1), pp. 213-225. Cited 118 times. doi: 10.1016/j.renene.2011.06.017spa
dcterms.bibliographicCitationAhmad, A., Khan, A., Javaid, N., Hussain, H.M., Abdul, W., Almogren, A., Alamri, A., (...), Niaz, I.A. An optimized home energy management system with integrated renewable energy and storage resources (2017) Energies, 10 (4), art. no. 549. Cited 188 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en10040549spa
dcterms.bibliographicCitationKasaei, M.J., Gandomkar, M., Nikoukar, J. Optimal management of renewable energy sources by virtual power plant (2017) Renewable Energy, Part B 114, pp. 1180-1188. Cited 120 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2017.08.010spa
dcterms.bibliographicCitationPetru, T., Thiringer, T. Modeling of wind turbines for power system studies (2002) IEEE Transactions on Power Systems, 17 (4), pp. 1132-1139. Cited 237 times. doi: 10.1109/TPWRS.2002.805017spa
dcterms.bibliographicCitationChen, Z., Spooner, E. Grid power quality with variable speed wind turbines (2001) IEEE Transactions on Energy Conversion, 16 (2), pp. 148-154. Cited 322 times. doi: 10.1109/60.921466spa
dcterms.bibliographicCitationBaouche, F.Z., Abderezzak, B., Ladmi, A., Arbaoui, K., Suciu, G., Mihaltan, T.C., Raboaca, M.S., (...), Țurcanu, F.E. Design and Simulation of a Solar Tracking System for PV (Open Access) (2022) Applied Sciences (Switzerland), 12 (19), art. no. 9682. Cited 9 times. www.mdpi.com/journal/applsci/ doi: 10.3390/app12199682spa
dcterms.bibliographicCitationElkholy, A. Harmonics assessment and mathematical modeling of power quality parameters for low voltage grid connected photovoltaic systems (Open Access) (2019) Solar Energy, 183, pp. 315-326. Cited 47 times. www.elsevier.com/inca/publications/store/3/2/9/index.htt doi: 10.1016/j.solener.2019.03.009spa
dcterms.bibliographicCitationSingh, D., Singh, D., Verma, K.S. Multiobjective optimization for DG planning with load models (2009) IEEE Transactions on Power Systems, 24 (1), pp. 427-436. Cited 422 times. doi: 10.1109/TPWRS.2008.2009483spa
dcterms.bibliographicCitationRahiminejad, A., Vahidi, B., Hejazi, M.A., Shahrooyan, S. Optimal scheduling of dispatchable distributed generation in smart environment with the aim of energy loss minimization (Open Access) (2016) Energy, Part 1 116, pp. 190-201. Cited 17 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.09.111spa
dcterms.bibliographicCitationHan, X., Zhang, H., Yu, X., Wang, L. Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models (Open Access) (2016) Applied Energy, 184, pp. 103-118. Cited 70 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2016.10.008spa
dcterms.bibliographicCitationMirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems (Open Access) (2017) Advances in Engineering Software, 114, pp. 163-191. Cited 2938 times. http://www.journals.elsevier.com/advances-in-engineering-software/ doi: 10.1016/j.advengsoft.2017.07.002spa
dcterms.bibliographicCitationFaris, H., Mirjalili, S., Aljarah, I., Mafarja, M., Heidari, A.A. Salp swarm algorithm: Theory, literature review, and application in extreme learning machines (2020) Nat. Inspired Optim, 2020, pp. 185-199. Cited 9 times.spa
dcterms.bibliographicCitationTightiz, L., Mansouri, S., Zishan, F., Yoo, J., Shafaghatian, N. Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm (Open Access) (2022) Energies, 15 (21), art. no. 8210. Cited 7 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15218210spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/en16010474
dc.subject.keywordsPlacement;spa
dc.subject.keywordsActive Distributionspa
dc.subject.keywordsNetwork;spa
dc.subject.keywordsVoltage Stabilityspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.