Mostrar el registro sencillo del ítem
Using an intelligent method for microgrid generation and operation planning while considering load uncertainty
dc.contributor.author | Mansouri, Saeedeh | |
dc.contributor.author | Zishan, Farhad | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Azimizadeh, Mohammadreza | |
dc.contributor.author | Giral-Ramírez, Diego Armando | |
dc.date.accessioned | 2023-07-19T12:57:59Z | |
dc.date.available | 2023-07-19T12:57:59Z | |
dc.date.issued | 2023-02-22 | |
dc.date.submitted | 2023-07 | |
dc.identifier.citation | Mansouri, S., Zishan, F., Montoya, O. D., Azimizadeh, M., & Giral-Ramírez, D. A. (2023). Using an intelligent method for microgrid generation and operation planning while considering load uncertainty. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.100978 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12162 | |
dc.description.abstract | The integration of distributed generation (DG), energy storage systems (ESS), and controllable loads near the place of consumption has led to the creation of microgrids. However, the uncertain nature of renewable energy sources (wind and photovoltaic), market prices, and loads have caused issues with guaranteeing power quality and balancing generation and consumption. To solve these issues, microgrids should be managed with an energy management system (EMS), which facilitates the minimization of operating (performance) costs, the emission of pollutants, and peak loads while meeting technical constraints. To this effect, this research attempts to adjust parameters by defining indicators related to the best possible conditions of the microgrid. Generation planning, the storage of generated power, and exchange with the main grid are carried out by defining a dual-purpose objective function, which includes reducing the operating cost of power generation, as well as the pollution caused by it in the microgrid, by means of the SALP optimization algorithm. Moreover, in order to make the process more realistic and practical for microgrid planning, some parameters are considered as indefinite values, as they do not have exact values in their natural state. The results show the effect of using the introduced intelligent optimization method on reducing the objective function value (cost and pollution). | spa |
dc.format.extent | 12 páginas | |
dc.format.medium | ||
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Results in Engineering, Vol. 17 (2023) | spa |
dc.title | Using an intelligent method for microgrid generation and operation planning while considering load uncertainty | spa |
dcterms.bibliographicCitation | L. Barelli, G. Bidini, F. Bonucci, A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration, Energy 113 (2016), https://doi. org/10.1016/j.energy.2016.07.117. | spa |
dcterms.bibliographicCitation | M.H. Moradi, M. Eskandari, S.M. Hosseinian, Operational strategy optimization in an optimal sized smart microgrid, IEEE Trans. Smart Grid 6 (Issue: 3) (May 2015), https://doi.org/10.1109/TSG.2014.2349795. | spa |
dcterms.bibliographicCitation | ] K. Rahbar, J. Xu, R. Zhang, Real-time energy storage management for renewable integration in microgrid: an off-line optimization approach, IEEE Trans. Smart Grid 6 (Issue: 1) (January 2015), https://doi.org/10.1109/TSG.2014.2359004. | spa |
dcterms.bibliographicCitation | YunfangXiea PengWena, AkbarTohidib LiminHuoa, ’’, Optimal and stochastic performance of an energy hub-based microgrid consisting of a solar-powered compressed-air energy storage system and cooling storage system by modified grasshopper optimization algorithm, Int. J. Hydrogen Energy 47 (Issue 27) (29 March 2022), https://doi.org/10.1016/j.ijhydene.2022.02.081. | spa |
dcterms.bibliographicCitation | Kaiye Gao, Tianshi Wang, Chenjing Han, Jinhao Xie, Ye Ma, Rui Peng, Open access review A review of optimization of microgrid operation, Energies 14 (10) (2021) 2842, https://doi.org/10.3390/en14102842. | spa |
dcterms.bibliographicCitation | ] C. Gamarra, J.M. Guerrero, Computational optimization techniques applied to microgrids planning: a review, Renew. Sustain. Energy Rev. 48 (August 2015), https://doi.org/10.1016/j.rser.2015.04.025 | spa |
dcterms.bibliographicCitation | CorinnaMohrlen ¨ JieYan, MarkKelly TuhfeGoçmen, ¨ GregorGiebelc ArneWessel, Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain, Renew. Sustain. Energy Rev. 165 (September 2022), https://doi.org/10.1016/j.rser.2022.112519. | spa |
dcterms.bibliographicCitation | N. Ganjei, F. Zishan, R. Alayi, H. Samadi, M. Jahangiri, R. Kumar, A. Mohammadian, Designing and sensitivity analysis of an off-grid hybrid windsolar power plant with diesel generator and battery backup for the rural area in Iran, J. Eng. 2022 (2022), https://doi.org/10.1155/2022/4966761 | spa |
dcterms.bibliographicCitation | T.A. Nguyen, M. Crow, Stochastic optimization of renewable-based microgrid operation incorporating battery operating cost, IEEE Trans. Power Syst. 31 (Issue: 3) (May 2016), https://doi.org/10.1109/TPWRS.2015.2455491. | spa |
dcterms.bibliographicCitation | ] Sim Wai Sheng, Yip Sook Yee, Jee Wong, Keen Raymond, Economic Dispatch of Micro-grid Considering Electric Vehicles, in: 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2021, https://doi.org/ 10.1109/ICCSCE52189.2021.9530948. | spa |
dcterms.bibliographicCitation | ] T. Nsilulu, C. MbunguabRamesh, M. BansalbRaj, ’’, A dynamic energy management system using smart metering, Appl. Energy 280 (2020), https://doi.org/10.1016/j. apenergy.2020.115990, 15 December. | spa |
dcterms.bibliographicCitation | ] V.N. Coelho, I.M. Coelho, B.N. Coelho, M.W. Cohen, A.J. Reis, S.M. Silva, M. J. Souza, P.J. Fleming, F.G. Guimar˜ aes, Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid, Renew. Energy 89 (2016), https://doi.org/10.1016/j.renene.2015.11.084. April. | spa |
dcterms.bibliographicCitation | R. Rigo-Mariani, B. Sareni, X. Roboam, Integrated optimal design of a smart microgrid with storage, IEEE Trans. Smart Grid 8 (Issue: 4) (July 2017), https:// doi.org/10.1109/TSG.2015.2507131. | spa |
dcterms.bibliographicCitation | F. Zishan, E. Akbari, O.D. Montoya, D.A. Giral-Ramírez, A.M. Nivia-Vargas, Electricity retail market and accountability-based strategic bidding model with short-term energy storage considering the uncertainty of consumer demand response, Res. Eng. (2022 Oct 3), 100679, https://doi.org/10.1016/j. rineng.2022.100679 | spa |
dcterms.bibliographicCitation | ] S. Kakran, S. Chanana, Smart operations of smart grids integrated with distributed generation: a review, Renew. Sustain. Energy Rev. 81 (January 2018), https://doi. org/10.1016/j.rser.2017.07.045. Part 1. | spa |
dcterms.bibliographicCitation | H. Alharbi, K. Bhattacharya, Stochastic optimal planning of battery energy storage systems for isolated microgrids, IEEE Trans. Sustain. Energy 9 (Issue: 1) (January 2018), https://doi.org/10.1109/TSTE.2017.2724514. | spa |
dcterms.bibliographicCitation | ] M. Quashie, C. Marnay, F. Bouffard, G. Joos, ´ Optimal planning of microgrid power and operating reserve capacity, Appl. Energy 210 (2018), https://doi.org/ 10.1016/j.apenergy.2017.08.015, 15 January. | spa |
dcterms.bibliographicCitation | ] Mohammad Ghiasi, Taher Niknam, Moslem Dehghani, Optimal multi-operation energy management in smart microgrids in the presence of RESs based on multiobjective improved DE algorithm: cost-emission based optimization, Appl. Sci. 11 (8) (2021) 3661, https://doi.org/10.3390/app11083661. | spa |
dcterms.bibliographicCitation | G. Carpinelli, F. Mottola, D. Proto, A. Russo, A multi-objective approach for microgrid scheduling, IEEE Trans. Smart Grid 8 (Issue: 5) (September 2017), https://doi.org/10.1109/TSG.2016.2516256. | spa |
dcterms.bibliographicCitation | ] X. Gong, F. Dong, M.A. Mohamed, O.M. Abdalla, Z.M. Ali, A secured energy management architecture for smart hybrid microgrids considering PEM-fuel cell and electric vehicles, IEEE Access 8 (2020), https://doi.org/10.1109/ ACCESS.2020.2978789. | spa |
dcterms.bibliographicCitation | J.D. Lara, D.E. Olivares, C.A. Canizares, Robust energy management of isolated microgrids, IEEE Systems Journal 13 (Issue: 1) (March 2019), https://doi.org/ 10.1109/JSYST.2018.2828838. | spa |
dcterms.bibliographicCitation | E. Foruzan, L. Soh, S. Asgarpoor, Reinforcement learning approach for optimal distributed energy management in a microgrid, IEEE Trans. Power Syst. 33 (Issue: 5) (September 2018), https://doi.org/10.1109/TPWRS.2018.2823641. | spa |
dcterms.bibliographicCitation | J. Wu, X. Xing, X. Liu, J.M. Guerrero, Z. Chen, Energy management strategy for grid-tied microgrids considering the energy storage efficiency, IEEE Trans. Ind. Electron. 65 (Issue: 12) (December 2018), https://doi.org/10.1109/ TIE.2018.2818660. | spa |
dcterms.bibliographicCitation | D. Romero-Quete, C.A. Canizares, ˜ An affine arithmetic-based energy management system for isolated microgrids, IEEE Transactions on Smart Grid 10 (Issue: 3) (May 2019), https://doi.org/10.1109/TSG.2018.2816403. | spa |
dcterms.bibliographicCitation | J. Montano, O.D. Garzon, ´ A.A.R. Munoz, ˜ L.F. Grisales-Norena, ˜ O.D. Montoya, Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks, Res. Eng. 16 (2022), 100654, https://doi. org/10.1016/j.rineng.2022.100654. | spa |
dcterms.bibliographicCitation | G.S. Mohammed, S. Al-Janabi, An innovative synthesis of optimization techniques (FDIRE-GSK) for generation electrical renewable energy from natural resources, Res. Eng. 16 (2022), 100637, https://doi.org/10.1016/j.rineng.2022.100637. | spa |
dcterms.bibliographicCitation | B. Raillani, D. Chaatouf, M. Salhi, A. Bria, S. Amraqui, A. Mezrhab, The effectiveness of the wind barrier in mitigating soiling of a ground-mounted photovoltaic panel at different angles and particle injection heights, Res. Eng. 16 (2022), 100774, https://doi.org/10.1016/j.rineng.2022.100774. | spa |
dcterms.bibliographicCitation | M. Sundararaj, N. Rajamurugu, J. Anbarasi, S. Yaknesh, R. Sathyamurthy, Parametric optimization of novel solar chimney power plant using response surface methodology, Res. Eng. 16 (2022), 100633, https://doi.org/10.1016/j. rineng.2022.100633 | spa |
dcterms.bibliographicCitation | D. Wang, J. Qiu, L. Reedman, K. Meng, L.L. Lai, Two-stage energy management for networked microgrids with high renewable penetration, Appl. Energy 226 (2018), https://doi.org/10.1016/j.apenergy.2018.05.112, 15 September. | spa |
dcterms.bibliographicCitation | ] S. Nikkhah, A. Rabiee, Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives, Renew. Energy 132 (March 2019), https://doi.org/10.1016/j. renene.2018.08.032. | spa |
dcterms.bibliographicCitation | ] R. Aboli, M. Ramezani, H. Falaghi, Joint optimization of day-ahead and uncertain near real-time operation of microgrids, Int. J. Electr. Power Energy Syst. 107 (May 2019), https://doi.org/10.1016/j.ijepes.2018.10.032. | spa |
dcterms.bibliographicCitation | ] Y. Zheng, B.M. Jenkins, K. Kornbluth, A. Kendall, C. Træholt, Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty, Appl. Energy 230 (2018), https://doi.org/10.1016/j. apenergy.2018.09.015, 15 November. | spa |
dcterms.bibliographicCitation | R. Alayi, F. Zishan, M. Mohkam, S. Hoseinzadeh, S. Memon, D.A. Garcia, A sustainable energy distribution configuration for microgrids integrated to the national grid using back-to-back converters in a renewable power system, Electronics 10 (15) (2021), https://doi.org/10.3390/electronics10151826, 1826.1826. | spa |
dcterms.bibliographicCitation | E. Akbari, N. Shafaghatian, F. Zishan, O.D. Montoya, D.A. Giral-Ramírez, Optimized two-level control of islanded microgrids to reduce fluctuations, IEEE Access (2022), https://doi.org/10.1109/ACCESS.2022.3203730. | spa |
dcterms.bibliographicCitation | ] ChenLi, GuoChen, GaoqiLiang, Integrated optimization algorithm: a metaheuristic approach for complicated optimization, Inf. Sci. 586 (March 2022), https://doi. org/10.1016/j.ins.2021.11.043. | spa |
dcterms.bibliographicCitation | MauroCastelli, et al., Salp swarm optimization: a critical review, Expert Syst. Appl. 189 (March 2022) 1, https://doi.org/10.1016/j.eswa.2021.116029. Cite. | spa |
dcterms.bibliographicCitation | ] L. Tightiz, S. Mansouri, F. Zishan, J. Yoo, N. Shafaghatian, Maximum power point tracking for photovoltaic systems operating under partially shaded conditions using SALP swarm algorithm, Energies 15 (21) (2022) 8210, https://doi.org/ 10.3390/en15218210. | spa |
dcterms.bibliographicCitation | S. Rajamand, ’’, Effect of demand response program of loads in cost optimisation of microgrid considering uncertain parameters in PV/WT ,market price and load demand, Energy 194 (March 2020) 1, https://doi.org/10.1016/j. energy.2020.116917. | spa |
dcterms.bibliographicCitation | JiyuXia BowenZhou, Multi-time scale optimal scheduling model for active distribution grid with desalination loads considering uncertainty of demand response, Desalination 517 (1) (December 2021), https://doi.org/10.1016/j. desal.2021.115262. | spa |
dcterms.bibliographicCitation | YuWang, YuFu, HaiyangLin, Uncertainty modeling of household appliance loads for smart energy management, Energy Rep. 8 (Supplement 1) (April 2022), https:// doi.org/10.1016/j.egyr.2021.11.097. | spa |
dcterms.bibliographicCitation | Jose M. Pinto, Ignacio E. Grossmann, Sumit Mitra, Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part I: modeling, Comput. Chem. Eng. 65 (4 June 2014), https://doi.org/10.1016/j.compchemeng.2014.01.016. | spa |
dcterms.bibliographicCitation | A.A. Moghaddam, A. Seifi, T. Niknam, M.R.A. Pahlavani, Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source, Energy 36 (11) (2011) 6490–6507, https://doi. org/10.1016/j.energy.2011.09.017. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1016/j.rineng.2023.100978 | |
dc.subject.keywords | Microgrid | spa |
dc.subject.keywords | Generation planning | spa |
dc.subject.keywords | Optimization problem | spa |
dc.subject.keywords | SALP Swarm algorithm | spa |
dc.subject.keywords | Operation cost | spa |
dc.subject.keywords | Uncertainty of generation and load | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.