Mostrar el registro sencillo del ítem

dc.contributor.authorRomero-Mercado, Caleb D.
dc.contributor.authorContreraz-Ortiz, Sonia H.
dc.contributor.authorMarrugo, Andres G.
dc.date.accessioned2023-07-19T12:57:15Z
dc.date.available2023-07-19T12:57:15Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationRomero-Mercado, C. D., Contreras-Ortiz, S. H., & Marrugo, A. G. (2022, November). Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs. In Workshop on Engineering Applications (pp. 150-159). Cham: Springer Nature Switzerland.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12161
dc.description.abstractThe convolutional neural networks (CNNs) as tools for ultrasound image segmentation often have their performance affected by the low signal-to-noise ratio of the images. This prevents a correct classification and extraction of relevant information and therefore affects clinical diagnosis. We propose a study of the effect of different speckle filtering methods on CNN performance. For the proposed metrics (Jaccard coefficient and BF-Score), it was obtained that the SRAD filter exhibited the best behavior even in the lowest quality data. In addition, the lowest values were obtained for the standard deviation and variance, which translates into lower data dispersion, better repeatability, and, therefore, greater confidence in its accuracy. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCommunications in Computer and Information Sciencespa
dc.titleEffect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNsspa
dcterms.bibliographicCitationBhatti, U.A., Yu, Z., Chanussot, J., Zeeshan, Z., Yuan, L., Luo, W., Nawaz, S.A., (...), Mehmood, A. Local Similarity-Based Spatial–Spectral Fusion Hyperspectral Image Classification With Deep CNN and Gabor Filtering (2022) IEEE Transactions on Geoscience and Remote Sensing, 60. Cited 81 times. https://ieeexplore.ieee.org/servlet/opac?punumber=36 doi: 10.1109/TGRS.2021.3090410spa
dcterms.bibliographicCitationByra Reddy, G.R., Prasanna Kumar, H. Breast Ultrasound Image Segmentation to Detect Tumor by Using Level Sets (2022) Lecture Notes in Networks and Systems, 355, pp. 319-325. springer.com/series/15179 ISBN: 978-981168511-8 doi: 10.1007/978-981-16-8512-5_35spa
dcterms.bibliographicCitationCesur, E., Yildiz, N., Tavsanoglu, V. On an improved FPGA implementation of CNN-based Gabor-type filters (2012) IEEE Transactions on Circuits and Systems II: Express Briefs, 59 (11), art. no. 6341057, pp. 815-819. Cited 17 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2012.2218471spa
dcterms.bibliographicCitationChen, M., Yu, L., Zhi, C., Sun, R., Zhu, S., Gao, Z., Ke, Z., (...), Zhang, Y. Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization (2022) Computers in Industry, 134, art. no. 103551. Cited 37 times. https://www.journals.elsevier.com/computers-in-industry doi: 10.1016/j.compind.2021.103551spa
dcterms.bibliographicCitationGómez-Flores, W., Coelho de Albuquerque Pereira, W. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound (Open Access) (2020) Computers in Biology and Medicine, 126, art. no. 104036. Cited 34 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2020.104036spa
dcterms.bibliographicCitationJeon, M., Kim, C. Multimodal photoacoustic tomography (2013) IEEE Transactions on Multimedia, 15 (5), art. no. 6425487, pp. 975-982. Cited 66 times. doi: 10.1109/TMM.2013.2244203spa
dcterms.bibliographicCitationKim, J., Lee, D., Jung, U., Kim, C. Photoacoustic imaging platforms for multimodal imaging (2015) Ultrasonography, 34 (2), pp. 88-97. Cited 93 times. http://e-ultrasonography.org/upload/usg-14062.pdf doi: 10.14366/usg.14062spa
dcterms.bibliographicCitationLavreniuk, M., Shelestov, A., Kussul, N., Rubel, O., Lukin, V., Egiazarian, K. Use of modified BM3D filter and CNN classifier for SAR data to improve crop classification accuracy (2019) 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering, UKRCON 2019 - Proceedings, art. no. 8879805, pp. 1071-1076. Cited 3 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8869682 ISBN: 978-172813882-4 doi: 10.1109/UKRCON.2019.8879805spa
dcterms.bibliographicCitationLu, L., Liang, Y., Xiao, Q., Yan, S. Evaluating fast algorithms for convolutional neural networks on FPGAs (Open Access) (2017) Proceedings - IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 2017, art. no. 7966660, pp. 101-108. Cited 189 times. ISBN: 978-153864036-4 doi: 10.1109/FCCM.2017.64spa
dcterms.bibliographicCitationMeza, J., Contreras-Ortiz, S.H., Romero, L.A., Marrugo, A.G. Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light (Open Access) (2021) Optical Engineering, 60 (5), art. no. 054106. Cited 7 times. http://www.spie.org/x867.xml doi: 10.1117/1.OE.60.5.054106spa
dcterms.bibliographicCitationMeza, J., Romero, L.A., Marrugo, A.G. MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation (2021) IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1282-1290. Cited 2 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-166544899-4 doi: 10.1109/CVPRW53098.2021.00141spa
dcterms.bibliographicCitationPei, S., Cong, S., Zhang, B., Liang, C., Zhang, L., Liu, J., Guo, Y., (...), Zhang, S. Diagnostic value of multimodal ultrasound imaging in differentiating benign and malignant TI-RADS category 4 nodules (2019) International Journal of Clinical Oncology, 24 (6), pp. 632-639. Cited 16 times. link.springer.de/link/service/journals/10147/index.htm doi: 10.1007/s10147-019-01397-yspa
dcterms.bibliographicCitationRouhi, R., Jafari, M. Classification of benign and malignant breast tumors based on hybrid level set segmentation (2016) Expert Systems with Applications, 46, pp. 45-59. Cited 54 times. doi: 10.1016/j.eswa.2015.10.011spa
dcterms.bibliographicCitationRouhi, R., Jafari, M., Kasaei, S., Keshavarzian, P. Benign and malignant breast tumors classification based on region growing and CNN segmentation (Open Access) (2015) Expert Systems with Applications, 42 (3), pp. 990-1002. Cited 304 times. doi: 10.1016/j.eswa.2014.09.020spa
dcterms.bibliographicCitationSharifrazi, D., Alizadehsani, R., Roshanzamir, M., Joloudari, J.H., Shoeibi, A., Jafari, M., Hussain, S., (...), Acharya, U.R. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images (Open Access) (2021) Biomedical Signal Processing and Control, 68, art. no. 102622. Cited 89 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2021.102622spa
dcterms.bibliographicCitationTripathi, P., Dass, R., Sen, J. A Comparative Analysis of Different Despeckling Filters Using Breast Ultrasonographic Images (2022) Lecture Notes in Electrical Engineering, 841, pp. 425-430. Cited 2 times. http://www.springer.com/series/7818 ISBN: 978-981168773-0 doi: 10.1007/978-981-16-8774-7_34spa
dcterms.bibliographicCitationXie, X., Shi, F., Niu, J., Tang, X. Breast ultrasound image classification and segmentation using convolutional neural networks (2018) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11166 LNCS, pp. 200-211. Cited 28 times. https://www.springer.com/series/558 ISBN: 978-303000763-8 doi: 10.1007/978-3-030-00764-5_19spa
dcterms.bibliographicCitationZhao, C., Wang, Q., Tao, X., Wang, M., Yu, C., Liu, S., Li, M., (...), Yang, M. Multimodal photoacoustic/ultrasonic imaging system: a promising imaging method for the evaluation of disease activity in rheumatoid arthritis (Open Access) (2021) European Radiology, 31 (5), pp. 3542-3552. Cited 14 times. www.link.springer.de/link/service/journals/00330/index.htm doi: 10.1007/s00330-020-07353-zspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1007/978-3-031-20611-5_13
dc.subject.keywordsPhotoacoustic Tomography;spa
dc.subject.keywordsThermoacoustics;spa
dc.subject.keywordsEchographyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.